Weather – Micronutrient Interactions in Soil and Plants– A Critical Review

Weather – Micronutrient Interactions in Soil and Plants– A Critical Review

S Neenu1* and K Ramesh2

1Crop Production Division, Central Plantation Crops Research Institute, Kasaragod, Kerala, India 671124
2Crop Production Division, Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad-500030
Keywords:Weather, change, Micronutrient, Soil temperature, Soil moisture, CO2, Light
https://doi.org/10.37273/chesci.cs20510136 • PDF


Abstract

Agricultural and natural ecosystems are characterized by sub-optimal availability of mineral nutrients. Mineral deficiencies are probably have the complex and poorly understood relation with the global climate change variables. Climate change variables can affect soil nutrient availability as well as plant nutrient contents by affecting soil moisture, soil temperature and carbon dioxide, soil microbial activity and plant growth. Micronutrient deficiencies are becoming more severe due to the high nutrient demand from the exhaustive and unfair agricultural practices, coupled with the changing weather patterns. We know that chemical factors are more vital limitations to plant growth than physical factors on a global basis. The present review covers the impact of various climatic factors on the availability of micronutrients in soil and plant.


References

  1. Mengel. 1980.Effect of potassium on the assimilate conduction to storage tissue, Ber. Deutsch Bot. Gesell. 93: 353–362.
  2. P. Lynch, S.B. St. Clair. 2004. Mineral stress: the missing link in understanding how global weather change will affect plants in real world soils,Field Crops Research. 90, 101-115.
  3. Foyer, M. Lelandais, K.J. Kunert. 1994. Photo oxidative stress in plants,Physiologiaplantarum. 92: 696–717.
  4. Xu, G. Luo, A.Wang, Y. Cheng. 1998. Effects of strong light and exogenous active oxygen species on chlorophyll fluorescence in lettuce,Acta Phytophysiol. Sinica. 24: 279–284.
  5. BassiriRad. 2000. Kinetics of nutrient uptake by roots: responses to global change, New Phytology. 147: 155–169.
  6. J. Mortvedt, F.R. Cox, L.M. Shuman, R.M. Welch in (Eds.), Micronutrients in Agriculture, Chapter 2, R.M. Welch, W.H. Allaway, W.A. House, J. Kubota. 1991. Geographic distribution of trace element problems,Soil Sci. Soc. Am.publishers, Madison. p31–57.
  7. J. Alloway. 2008. Zinc in soils and crop nutrition,Brussels, Belgium (Online book: International Zinc Association). p135.
  8. Kogawara, M. Norisada, T.Tange H. Yagi, K. Kojima. 2006. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinusdensiflora) seedlings, Tree Physiol. 26:25–33.
  9. P. Conroy, P.J. Milham, E.W.R. Barlow. 1992. Effect of nitrogen and phosphorus availability on the growth response of Eucalyptus grandis to high CO2. Plant Cell Environ. 15: 843–847.
  10. M Newbery, J. Wolfenden, T.A. Mansfield, A.F. Harrison. 1995. Nitrogen, phosphorus and potassium uptake and demand in Agrostiscapillaris: the influence of elevated CO2 and nutrient supply, New Phytol. 130: 565–574
  11. V. Neue, K.S. Latin. 1994.MonogrTheorAppl Genetics. 21: 175-200.
  12. N. Takkar, C.D. Walker. 1993. The distribution and correction of zinc deficiency, Zinc in Soils and Plants (ed) AD Robson (Kluwer Academic Publishers: London, England). p151– 165.
  13. Cakmak. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species, New Phytol.146:185–205.
  14. C. Trumble, H.M. Ferres. 1946. Response of herbage legumes to applied nutrients on some southern Australian soils and their dependence on external factors, J. Aust. Inst.Agri. Sci. 12: 32-43.
  15. T. Moraghan, H.J. Mascagni. 1991. Environmental and soil factors affecting micronutrient deficiencies and toxicities, Micronutrients in Agriculture book series 4 (eds) JJ Mortvedt, FR Cox, LM Shuman and RM Welch (Madison, WI: Soil Science Society of America). p371-425.
  16. F. Brennan, J.D. Armour, J.D. Reuter. 1993. Diagnosis of Zinc Deficiency, Zinc in soils and plants (ed) AD Robson andKluwer (Dordecht: Academic Publisher). p 167-181.
  17. Najafi-Ghiri, R.Ghasemi-Fasaei, E.Farrokhnejad. 2013. Factors Affecting Micronutrient Availability in Calcareous Soils of Southern Iran, Arid Land Research and Management. 27: 203-215.
  18. E. Martin, J.G. McLean, J. Quick. 1965.Effect of temperature on the occurrence of phosphorus – induced zinc deficiency.Soil Science Society of America Proceedings. 29: 411-413.
  19. G. Ellis, J.F. Davis W.H. Judy. 1965. Effect of method of incorporation of Zn in fertilizer on zinc uptake and yield of pea beans (Phaseolus vulgaris). Soil Science Society of America. Proc. 29: 635-636.
  20. Bauer, W.L. Lindsay. 1965. The effect of soil temperature on the availability of indigenous soil zinc, Soil Science Society of America. Proc. 29:413-420.
  21. K.S. Nambiar. 1976. Uptake of Zn65 from dry soil by plants, Plant Soil. 44: 267–271.
  22. S. Mikkelsen, D.M. Brandon.1975. Zinc deficiency in California rice, California Agriculture. 29: 8-9.
  23. G. Sud, R. Prased, M. Bhargava. 1995. Effect of weather conditions on concentration of calcium, manganese, zinc, copper and iron in green tea (Camellia sinensis (L) O Kuntze) leaves of north-western India, J. Sci. Food Ag. 67: 341-346.
  24. Da Ge, F.G. Sui, N. Sa, N.B. Sun, X. Ha, C.L. Tong. 2010. Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains,J Plant Nutr. 33: 1811–1818.
  25. Velu, C. Guzman, S. Mondal, J.E. Autrique, J. Huerta, R.P. Singh. 2016.Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat, J Cereal Sci. 69:182–186.
  26. Steffens, B. Hutsch, T. Eschholz, T. Losak, S. Schubert. 2005.Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity, Plant Soil Environ. 51: 545.
  27. Abbas, P.Sharmila, D.Uprety, P.Saradhi. 2009. Effects of elevated CO2 on soil physicochemical characteristics under Free Air CO2 Enrichment (FACE) technology, IOP Conference Series: Earth and Environmental Science. 6: 292045.
  28. Guo, M.Q. Zhang, X.W. Wang, W.J. Zhang. 2015. A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains, J Integr Agric. 14: 50–57.
  29. Fangmeier, U. Gruters, P. Hogy, B. Vermehren, H.J. Jager. 1997. Effects of elevated CO2 nitrogen supply and tropospheric ozone on spring wheat 2. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn), Environmental Pollution.96: 43–59.
  30. Wang, X. Zhang, L. Li, K. Cheng, J. Zheng, J. Zheng, M. Shen, Z. Liu, G. Pan. 2016. Changes in micronutrient availability and plant uptake under simulated climate change in winter wheat field, J. Soils Sediments. 16: 2666-2675.
  31. Barrett, A. Richardson, R. Gifford. 1998. Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus, Ausralian Journal of Plant Physiology. 25:87–93.
  32. L. Staddon, A. Heinemeyer, A.H. Fitter. 2002. Mycorrhizas and global environmental change: research at different scales, Plant Soil. 244:253–261.
  33. M.A. Fransson, A.F.S. Taylor, R.D. Finlay. 2001. Elevated atmospheric CO2 alters root symbiont community structure in forest trees,New Phytology. 52: 431–442.
  34. Manderscheid, J.Bender, H.J. Jäger, H.J. Weigel. 1995. Effects of season long CO2 enrichment on cereals: II. Nutrient concentrations and grain quality,Agric. Ecosyst. Environ.54: 175–185.
  35. X. Wu, G.X. Wang, Y.F. Bai, J.X. Liao. 2004. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels, AgricEcosyst Environ. 104: 493–507.
  36. S. Myers, A.Zanobetti, I. Kloog, P. Huybers, A.D.B. Leakey, A.J.Bloom, E.Carlisle, L.H.Dietterich, G. Fitzgerald, T. Hasegawa, N.M. Holbrook, R.L. Nelson, M.J. Ottman, V. Raboy, H. Sakai, K.A. Sartor, J. Schwartz, S.Seneweera, M. Tausz, Y. Usui.2014. Increasing CO2 threatens human nutrition, Nature. 510: 139–142.
  37. Dong, N. Gruda, S.K. Lam, X. Li, Z. Duan. 2018. Effects of elevated CO2 on nutritional quality of vegetables: A Review,Front Plant Sci. 9: 924.
  38. Jin, R. Armstrong, C.Tang. 2019.Impact of elevated CO2 on grain nutrient concentration varies with crops and soils – A long-term FACE study, Sci Total Environ. 651: 2641–2647.
  39. Asif, O.Yilmaz, L.Ozturk. 2017. Elevated carbon dioxide ameliorates the effect of Zn deficiency and terminal drought on wheat grain yield but compromises nutritional quality, Plant Soil. 411: 57–67.
  40. Parvin, S. Uddin, S. Tausz-Posch, R. Armstrong, G. Fitzgerald, M. Tausz. 2019. Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: a FACE study on lentil (Lens culinaris) and faba bean (Viciafaba), Crop Pasture Science. 70: 244–253.
  41. H. Edward, E.J. Kamprath. 1974.Zinc accumulation by corn seedlings as influenced by phosphorus, temperature and light intensity, Agronomy Journal. 66: 479-482.
  42. Wang, J.Y. Jin. 2005. Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency, Photosynthetica. 43: 591-596.
  43. J.Salisbury, A.Hall, C.S.Grierson, K.J. Halliday. 2007.Phytochrome coordinates Arabidopsis shoot and root development,Plant J. 50: 429–438.
  44. Marscher, I. Cakmak. 1989. High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants, Journal of plant Physiol. 134:308-315.
  45. Sillanpaa. 1982. Micronutrients and nutrient status of soils, a global study, FAO Soil Bulletin. No. 48 (Rome, Italy:FAO). p442.
  46. M. Shorrocks. 1997.The occurrence and correction of boron deficiency, Plant and Soil. 193: 121-148.
  47. Mengel, E.A. Kirkby. 1987.Principles of plant nutrition 4th ed (Worblaufen-Bern, Switzerland : International Potash Institute). p427-453.
  48. A. Raven. 1980. Short- and long-distance transport of boric acid in plants, New Phytol. 84: 231-249.
  49. M. Walker. 1969. One degree increments in soil temperatures affect maize seedling behaviour, Proc. Soc.Soil Sci. Am. 33: 729-736.
  50. W. Biggar. 1960. M. Fireman, Boron adsorption and release by soils, Soil Science Society of America Proceedings. 24: 115-120.
  51. Goldberg, H.S. Forster, E.L. Heick. 1993. Temperature effects on boron adsorption by reference minerals and soils,Soil Science. 156: 316-321.
  52. T. Bingham, A.L. Page. 1971. Specific character of boron adsorption by an amorphous soil, Soil Science Society of America Proceedings. 35: 892-893.
  53. A. Fleming. 1980. Essential micronutrients, I: Boron and molybdenum, Applied Soil Trace Elements, (ed)BE Davies (New York: John Wiley and Sons). p 155–197.
  54. Harder. 1961.Einbau von Bor in detritischeTonminerale.ExperimentezurErkl¨arung des BorgehaltestonigerSedimente,GeochimCosmochim Acta. 21: 284–294.
  55. L. Couch, R.E. Grim. 1968. Boron fixation by illites, Clays & Clay Minerals. 16: 249-256.
  56. Jasmund, B. Lindner. 1973. Experiments on the fixation of boron by clay minerals, Proc. lnt. Clay, Conf. (ed) JM Serratosa(Madrid: Div. Ciencias C.S.I.C). p 399-413.
  57. Singh. 1971. Equilibrium adsorption of boron in soils and clays, Geoderma. 5: 209–217.
  58. J. Lovatt. 1985. Evolution of xylem resulted in a requirement for boron in the apical meristems of vascular plants. New Phytology. 99: 509-522.
  59. S. Chang, W.T. Huang, S. Lian, W.L. Wu. 1992. Research on soil testing and leaf diagnosis as guides to fertilization recommendation for the citrus orchards in Taiwan, Annual Research Reports on Soils and Fertilizers 81 (Published by the Provincial Department of Agriculture and Forestry, Taiwan).p167-195.
  60. F. Chiu, S.S. Chang. 1985. Diagnosis and correction of boron deficiency in citrus orchard, Seminar on Leaf Diagnosis as a Guide to Orchard Fertilization (Technical Bulletin No. 91. Food Fertilizer and Technology Center, Taipei, Taiwan). p 1-12.
  61. S. Chang. 1993. Nutritional physiology of boron and the diagnosis and correction of boron deficiency and toxicity in crops,Proceedings of the Symposium on Reclamation of the Problem Soils in the Eastern Taiwan, (eds) SN Hwang and GC Chiang (Chinese Society of Plant Nutrition and Fertilizer Science and Hwalian District Agricultural Improvement Station, Taiwan).p 109-122.
  62. A. Barber.1995. Soil nutrient bioavailability: a mechanistic approach (New York: John Wiley and Sons). p 384.
  63. D. Scott, S.D. Beasley, L.F. Thompson. 1975. Effect of lime on boron transport to and uptake by cotton, Soil SciSoc Am Proc. 39:1116–1121.
  64. C. Berger. 1962. Micronutrient deficiencies in the United States, Journal of Agricultural and Food Chemistry. 10:178-181.
  65. Merrien. 1993. Diagnostic parcellaire sur une culture de tournesol, Perspectives Agricoles. 179:80–84.
  66. Faust, C.B. Shear. 1968. Corking disorders of apples: A physiological and biochemical review, Botanical Review. 34:441-469.
  67. N. Miley, W.E. Woodall, 1967. Boron for cotton, Univ. Arkansas Coop. Ext. Serv. Leaflet. P 349.
  68. M. Evans, D.L. Sparks. 1963. On the chemistry and mineralogy of boron in pure and in mixed systems, Communication in Soil Science and Plant Analysis. 14: 827-846.
  69. L. Flannery. 1985. Understanding boron needs in crop production, Fertilizer Progress. 16: 41-45.
  70. Sulaiman, B.D. Kay.1972. Measurement of the diffusion coefficient of boron in soil using a single cell technique, Soil Sci. Soc. Am. Proc. 36:746–752.
  71. C. Gupta, J.A. Sutcliffe. 1968. Influence of phosphorus on molybdenum content of brussel sprouts under field and green house conditions and on recovery of added molybdenum in soil, Can.J. Soil Sci. 48:117-123.
  72. Mezuman, R. Keren. 1981. Boron adsorption by soils using a phenomenological adsorption equation,Soil Science Society of America Journal. 45: 722–726.
  73. Manderscheid, J. Bender, H.J. Jäger, H.J. Weigel. 1995. Effects of season long CO2 enrichment on cereals: II. Nutrient concentrations and grain quality, AgricEcosyst Environ. 54: 175–185.
  74. Hagedorn, W. Landolt, D. Tarjan, P. Egli, J.B. Bucher. 2002. Elevated CO2 influences nutrient availability in young beech-spruce communities on two soil types, Oecologia. 132: 109–117.
  75. Liu, J.S. King, C.P. Giarddina. 2007. Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper brich communities, Plant Soil. 299:65–82.
  76. W. Jin, S.T. Du, W.W. Chen, G.X. Li, Y.S. Zhang, S.J. Zheng. 2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato, Plant Physiology. 150:272-280.
  77. Mishra, S.A. Heckathorn, J.M. Frantz. 2012. Elevated CO2 affects plant responses to variation in boron availability, Plant Soil. 350: 117-130.
  78. Fernando, J. Panozzo, M.Tausz, R.M. Norton, G.J. Fitzgerald, S. Myers, C.Walker, J.Stangoulis, S.Seneweera. 2012. Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system, J Cereal Sci. 56: 684–690.
  79. J. Oertli. 1963. Effect of form of nitrogen and pH on growth of blueberry plants, Agron. J. 55: 305–307.
  80. J. Webb, W.A. Norvell, R.M. Welch, R.D. Graham. 1993. Using a chelate-buffered nutrient solution to establish the critical solution activity of Mn2– required by barley (Hordeum vulgare L.), Plant Soil. 153: 195-205.
  81. D. Graham. 1988. Genotypic differences in tolerance to manganese deficiency, Manganese in soils and plants, (eds) RD Graham, RJ Hannam and NC Uren (Dordrecht: Kluwer Academic Publishers). p 261–276.
  82. Rengel. 2000. Uptake andtransport of manganese in plants, in: A. Singel, H.Singel (eds), Metal ions in biology system, New york, USA. p. 57-88.
  83. Foyer, M.Lelandais, K.J.Kunert. 1994. Photo oxidative stress in plants, Physiologiaplantarum. 92:696–717.
  84. B. Horsley, R.P. Long, S.W. Bailey, R.A. Hallett, T.J. Hall. 2000. Factors associated with the decline disease of sugar maple on the Allegheny Plateau, Can. J. Forest Res. 30: 1365–1378.
  85. T. Driscoll, G.B. Lawrence, A.J. Bulger, T.J. Butler, C.S. Cronan, C. Eagar, K.F. Lambert, G.E. Likens, J.L. Stoddard, K.C. Weathers. 2001. Acidic deposition in the North eastern United States: sources and inputs, ecosystem effects, management strategies,Bioscience. 51: 180–198.
  86. A. Mac Millan, H.A. Hamilton. 1971. Carrot response to soil temperature and copper, manganese, zinc and magnesium, Can.J. Soil Sci. 51: 293-297.
  87. Nyborg. 1970. Sensitivity to manganese deficiency of different cultivars of wheat, oats and barley, Can. J. Soil Sci. 50: 198-200.
  88. M. Reid, G.J. Racz. 1985. Effects of soil temperature on manganese availability to plants grown on an organic soil, Can.J. Soil Sci. 65: 73-80.
  89. V. Maas, D.P. Moore, B.J. Mason. 1968. Manganese absorption by excised barley roots, Plant Physiology. 43: 527-530.
  90. J. Ghazali, F.R. Cox. 1981. Effect of temperature on soybean growth and manganese accumulation, Agronomy Journal. 73: 363-367.
  91. H. Godo, H.M. Reisenauer. 1980. Plant effects on soil manganese availability, Soil Science Society of American Journal. 44: 993-995.
  92. Sublett, T. Barickman, C. Sams. 2018. Effects of elevated temperature and potassium on biomass and quality of dark red ‘LolloRosso’lettuce, Hortic. 4: 11.
  93. C. Drew. 1988. Effects of flooding and oxygen defi­ciency on plant mineral nutrition, Advances in Plant Nutrition. 3:115–159.
  94. M. Shuman. 1980. Effects of soil temperature, moisture, and air-drying on extractable manganese, iron, copper and zinc, Soil Science. 130: 336–343.
  95. I. Rich. 1956. Manganese content of peanut leaves as related to soil factors, Soil Sci. 82:353-363.
  96. M. Smith. 1976. Manganese deficiency—common in maples, Am. Nursy. mangmt.11: 131.
  97. J. Barrow, K. Spencer, W.M. McArthur. 1969. Effects of rainfall and parent material on the ability of soils to adsorb sulfate, Soil Science. 108:120-126.
  98. H. Bickelhaupt, R.E. Lea,D.D. Tarbet, A.L. Leaf. 1979. Seasonal weather regimes Influence interpretation of Pinusresinosa foliar analysis, Soil Science Society of American Journal. 43: 417-420.
  99. A. Barber. 1981. Chemistry in the soil environment (Madison: Soil Science Society of America Special Publ).p1-12.
  100. C. McCain, J.L. Markley. 1989. More manganese accumulates in maple sun leaves than in shade leaves, Plant Physiol. 90:1417–1421.
  101. Horiguchi. 1989. Mechanisms of manganese toxicity and tolerance of plants, Journal of Plant Nutrition. 11: 235-246.
  102. Fugiwara, H. Ishida. 1964. Acceleration of manganese uptake by rice plant grown under unfavourable temperature or light condition, Tohoku Journal of Agricultural Research. 14:209-215.
  103. Schlichting, L. Sparrow et al. 1988. Distribution and amelioration of manganese toxic soils, Manganese in Soils and Plants,(ed) R Graham (Dordrecht: Kluwer Academic Publishers).p 277–288.
  104. Gonzalez, K.L. Steffen, J.P. Lynch. 1998. Light and excess manganese – implications for oxidative stress in common bean, Plant Physiology. 118: 493–504.
  105. D. Abrams. 1998. The red maple paradox,Bioscience. 48: 355–364.
  106. K. Labanauskas, L.H. Stolzy,L.J. Klotzand, T.A. DeWolfe. 1971. Soil carbon dioxide and mineral accumulation in citrus seedlings (Citrus sinensis var. Bessie), Plant and Soil. 35:337-346.
  107. R.Davenport, R.G.Stevens. 2006. High soil moisture and low soil temperature are associated with chlorosis occurrence in concord grape, Hortscience. 41: 418-422.
  108. C. Little. 1971. The treatment of iron deficiency,(ed) J WebberUnited Kingdom Ministry Agri, Fish Food Technology Bulletin. 21: 45-61.
  109. C. Brown. 1961. Iron chlorosis in plant, Advances in Agronomy. 13: 329-369.
  110. H. Bennet, N.J. Chatterton, P.A. Harrison. 1988. Rhizosphere physiology of crested wheat grass and legume seedlings: Root –shoot carbohydrate interactions, Journal of Plant Nutrition. 11: 1099- 1116.
  111. L. Lindsay. 1979. Chemical Equilibria in Soils (New Jersey: John Wiley and Sons). p423.
  112. Marschner. 1995. Mineral Nutrition of Higher Plants (New York: Academic Press).p362-363.
  113. Sasaki, N. Kurano, S. Miyachi. 1998. Induction of ferric reductase activity and of iron uptake capacity in Chlorococcumlittorale cells under extremely high-CO2 and iron-deficient conditions, Plant Cell Physiol.39: 405–410.
  114. A. Prior, H.A. Torbert, G.B. Runion, G.L. Mullins, H.H. Rogers, J.R. Mauney. 1998.Effects of CO2 enrichment on cotton nutrient dynamics,J. Plant Nutr. 21:1407–1426.
  115. Peñuelas, S.B. Idso, A.Ribas, B.A.Kimball. 1997. Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves,New Phytol. 135: 439–444.
  116. C. Sheaffer, A.M. Decker, R.L. Chatney, L.W. Douglass. 1979. Soil temperature and sewage sludge effects on corn yields and macronutrient content,J. Envt. Quality. 8: 450-454.
  117. Li, Q. Zhang, X. Gou, R. Wang, H. Wang, S. Wang. 2011. Temperature changes the dynamics of trace elements accumulation in Solanum tuberosum L.Climate change. 112: 3-4.
  118. S. Beckwith, K.G. Tiller, E. Suwadji. 1975. The effects of flooding on the availability of trace metals to rice in soils of differing organic matter status; in Trace elements in soil plant animal systems (eds) DCD Nicholas and A Egan (New York : Academic press). p135.
  119. N. Ponnamperuma, Chemical kinetics of wetland rice soils relative to soil fertility, Wetland soils: Characterization, classification and utilization(Philippines: Int Rice Res Inst), 1985, p71-89.
  120. J. Graves, J.F.Sutcliffe. 1974. An effect of copper deficiency on the initiation and development of flower buds of Chrysanthemum morifolium grown in solution culture.Annuals of Botany. 38: 729-738.
  121. Tarekegne, A. Bennie, M. Labuschagne. 2000. Effects of soil water logging on the concentration and uptake of selected nutrients in wheat genotypes differing in tolerance, the eleventh regional wheat workshop for eastern, central and southern Africa, Addis Abeba, Ethiopia, Addis Ababa. p253-263.
  122. Jiemin Zheng, Haiyan Wang, Zhongquan Li, Shirong Tang, Ziyuan Chen. 2008.Using elevated carbon dioxide to enhance copper accumulation in Pteridiumrevolutum, a copper-tolerant plant, under experimental conditions, International Journal of Phytoremediation. 10:161-172.
  123. Nakandalage, S. Seneweera, Chapter 12, Micronutrients use efficiency of crop-plants under changing climate, In M.A. Hossain, T. Kamiya, D.J.Burritt, L.S. Phan Tran, T. Fujiwara (eds). 2018. Plant Micronutrient Use Efficiency. Academic Press, p 209-224.
  124. J. Barrow, T.C. Shaw. 1974. Factors affecting the long-term effectiveness of phosphate and molybdate fertilizers, Communication in Soil Science and Plant Analysis. 5: 355-364.
  125. Kubota, E.R. Lemon, W.H. Alloway. 1963. The effect of soil moisture content upon the uptake of molybdenum, copper, and cobalt by alsike clover, Soil Science Society of America Proceedings. 27: 679–683.
  126. L. Dionne, A.R. Pesant. 1986. Effects des regimes hydriqueset des pH du sol sol la response au molybdene de la luzerne, Can.J. Soil Sci. 66: 421-435.
  127. C.Gupta. 1997. Symptoms of molybdenum deficiency and toxicity in crops, Molybdenum in agriculture (ed) UC Gupta (Cambridge: Cambridge University Press).p160-181.
  128. B. Jones, G.B. Belling. 1967. The movement if copper, molybdenum, and selenium in soils as indicated by radioactive isotopes,Australian Journal of Agricultural Research. 18: 733–740.
  129. Mahonachi, A.R. Socorro, M. Talon. V. Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: Growth, photosynthesis and mineral nutrient imbalance, Plant and soil. 281: 137–146.
  130. E. Engel, P.L. Bruckner, J.Eckhoff. 1998. Critical tissue concentration and chloride requirements for wheat,Soil SciSoc Am J. 62: 401-405.