Volume 14, Issue 53, 2025 (January – March)
Research Article
Assessment of the content of metallic trace elements (Cu, Zn, Pb, Cd, Hg) in the tissue of achatina fulica snails boiled and consumed by the population of the town of Daloa (Côte d’Ivoire)
Kacou Alain Paterne DALOGO, Ano Guy Serge EHOUMAN, Adé Hortense HAMPOH, Djamatchè Paul valery AKESSE, Djédoux Maxime ANGAMAN, Karim Sory TRAORE
Keywords: achatina fulica, metallic trace elements, contamination, maximum reference concentrations
DOI:10.37273/chesci.cs205410625
Abstract
The giant achatina fulica snails that have recently been introduced to West Africa are increasingly consumed by people in Côte d’Ivoire because they are readily available in urban areas, particularly in shallows, marshy areas and rubbish dumps. The presence of snails in these potentially polluted areas exposes them to metallic contamination, especially as these molluscs have a great capacity to accumulate these toxic compounds. The aim of this study was to evaluate the level of contamination by metallic trace elements (TMEs) (Cu, Zn, Pb, Cd, Hg) in boiled achatina fulica snails consumed by the population of the town of Daloa in west-central Côte d’Ivoire. The eighteen (18) snail samples taken from six (6) sampling sites were boiled before analysis using an inductively coupled plasma optical emission spectrometer (ICP-OES). The results show that the snails sampled were heavily loaded with the oligo-elements Cu and Zn, with average concentrations reaching 343±39.38 mg/Kg and 177±3.218 mg/Kg respectively. Pb and Cu were detected in levels that even exceeded the maximum acceptable reference concentrations for molluscs at some sites. Hg was very weakly present in the samples, with the maximum average concentration not exceeding 0.007±0.0008 mg/Kg.
References
[1] Sodjinou E., Biaou G., Codjia J-C. Caractérisation du marché des escargots géants africains (achatines) dans les départements de l’Atlantique et du Littoral au Sud-Bénin. Tropicultura, 2002, 20(2): 83-88.
[2] Bouye T. R., Ocho-Anin A. A. L., Karamoko M., Otchoumou A. Etude de la croissance d’un escargot géant africain comestible : Achatina achatina (Linné, 1758), élevé sur du substrat amendé à la poudre de coquilles d’escargot. J. Appl. Biosci., 2017, 109:10630-0639. DOI: http://dx.doi.org/10.4314/jab.v109i1.7
[3] Otchoumou A., Zongo D., Dosso H. Contribution à l’étude de l’escargot géant Africain Achatina achatina (L). Annales d’écologie, 1990, tome XXI, pp. 31-58.
[4] Kouadio E.J.P, Konan K.H., Brou K., Dabonné S., Dué S. A.E. & Kouamé L.P. Etude de quelques paramètres de croissance et de valeur nutritive des variétés d’escargot Archachatina marginata (Swainson) élevées en milieu naturel. Tropicultura, 2015, 33 (1): 38-45.
[5] Otchoumou A. Effet de la teneur en calcium d’aliments composés et de la photopériode sur les performances biologiques chez trois espèces d’escargots Achatinidae de Côte d’Ivoire élevées en bâtiment. Thèse de Doctorat d’Etat ES-Sciences Naturelles en Biologie et Ecologie Animales, Université d’Abobo Adjamé, 2005, Abidjan, Côte d’Ivoire, 171 p.
[6] Adeyeye I. E. Waste yield, proximate and mineral composition of three different types of land snails found in Nigeria. International Journal of Food Science & Nutrition, 1996, 47 (2): 111-116.
[7] Aboua F. Chemical composition of Achatina fulica. Tropicultura, 1990, 8(3): 121-122
[8] Mbétid-Bessane E. Analyse de la filière des escargots comestibles dans la Région de l’Equateur en République Centrafricaine. Tropicultura, 2006, 24(2): 115-119. DOI: www.tropicultura.org/text/v24n2/115.pdf
[9] Hounkpatin A. S. Y., Edorh A. P., Salifou S., Gnandi K., Koumolou L., Agbandji L., Aissi K.A., Gouissi M., Boko M. Assessment of exposure risk to lead and cadmium via fish consumption in the lacusrian village of Ganvié in Benin republic. Journal of Environmental Chemistry and Ecotoxicology, 2012, 4(1): 1-10. DOI: https://doi.org/10.5897/JECE11.063
[10] Davidson C.M., Duncan A.L., Littlejohn D., Ure A.M., Garden L.M. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 1998, 363 (1): 45-55.
[11] Reddy K.J., Wang L., Gloss S.P. Solubility and mobility of copper, zinc and lead in acidic environments. Plant and Soil, 1995, 171: 53-58.
[12] Ahmad, J.U. and Abdul Goni, M. Heavy Metal Contamination in Water, Soil, and Vegetables of the Industrial Areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 2010, 166: 347-357. http://dx.doi.org/10.1007/s10661-009-1006-6.
[13] Swaileh K.M., Rabay’a N., Salim R., Ezzughayyar A., Rabbo A. A. Concentrations of heavy metals in roadside soils, plants, and landsnails from the West Bank, Palestine. Journal of Environmental Science and Health Part a- Toxic/Hazardous Substances & Environmental Engineering, 2001, 36 (5): 765-778.
[14] Viard B., (2004). Mise au point et validation, sur sites contamines, (ETM-HAP) d’un test de biosurveillance en microcosme : croissance et bioaccumulation par le gastéropode terrestre Hélix aspersaaspersa. Thèse de doctorat, Ecole Doctorale Sciences et Ingénierie des Ressources Procédés Produits Environnement, Discipline: sciences de la vie, Mention: toxicologie de l’environnement, Université de Metz, France, 267 p.
[15] Edorh P. A., Agonkpahoun E., Gnandi K., Guedenon P., Koumolou L., Amoussou C., Ayedoun A.M., Boko M., Gbeassor M., Rihn B.H., Creppy E.E., An assessment of the contamination of Achatinaachatinaby toxic metals in Okpara village (Benin). Int. J. Biol. Chem. Sci., 2009, 3 (6): 1428-1436.
[16] Adamou M. R., Pazou E. Y. A., Deguenon A. Y. Contamination des escargots prélevés dans la vallée de l’Ouémé au Bénin par des métaux lourds et évaluation des risques sanitaires. Int. J. Biol. Chem. Sci., 2019, 13 (1): 126-143.
[17] Nica V.D., Bura M., Gergen L., Hărmănescu M. & Bordean D-M. Bioaccumulative and conchological assessment of heavy metals transfer in a soil-plant-snail food chain. Chemistry Central Journal, 2012, 6 (55): 1-15. DOI: 10.1186/1752-153X-6-55.
[18] Commission Européenne. Règlement CE N°2021/1317 de la commission du 9 Aout 2021 modifiant le règlement CE N°1881/2006 du 19 décembre 2006 portant fixation des teneurs maximales pour certains contaminants dans les denrées alimentaires.
[19] Horowitz A. A primer on Trace Metal Sediment Chemistry. United States Geological Survey, 1985, USA, 62 p.
[20] Grara N., Boucenna M., Atalia A., Berrebba H., Djebar M.R. Etude experimentale de la bioaccumulation des éléments traces métaliques Cd, Cu, Zn et Pb chez l’escargot Helix aspersa. Bulletin de l’institut scientifique, 2012, 34 (2), p 183-187.
[21] Viard B., Maul A., Pihan J-C. Standard use conditions of terrestrial gastropods in active biomonitoring of soil contamination. Journal Environmental monitoring, 2004, 6(2):103-7.
[22] Coeurdassier M., Gomot-de Vaufleury A., Lovy C., Badot, P.M. Is the cadmium uptake from soil important in bioaccumulation and toxic effects for snails? Ecotoxicology and Environmental Safety, 2002, 53! 425-431.
[23] Schoeters G., Den H. E., Zuurbier M., Naginiene R., Hazel P., Stilianakis N., Ronchetti R. & Koppe J.G. Cadmium and children : exposure and health effect. Acta Paediatrica supplements, 2006, 95 (43): 50-54.
[24] Carmignani M., Boscolo P., Artese L., Del rosso G., Porcelli G., Felaco M., Volpe R., Giuliano G. Renal mechanisms in the cardiovascular effects of chronic exposure to inorganic mercury in rats. British Journal of Industrial Medicine, 1992, 49 (4): 226-232.
[25] Biney C., Amuzu A.T., Calamari D., Kaba N., Mbome L.I., Naeve H., Ochumba O., Osibanjo O., Radegonde V. Saad M. A. H. Etude des métaux lourds. Revue de la pollution dans l’environnement aquatique africain, 1994, FAO, 25: 37-67.