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Introduction 

Plant infecting fungal pathogens produce several toxic substances and few of them plays a major role for causing 

disease symptoms in plants. The identification and quantification of such primary toxic substances produced by the 

fungal pathogens is essential for the development of diagnostic tools and effective disease management strategy 

through reducing the activity of toxins. Enzymes and protein based detection techniques are shows reduced 

specificity. Nucleic acid based detection techniques are highly expensive and time consuming. Using these advanced 

detection tools it is very difficult to diagnose new pathogens or unknown organisms, as a result these methods are not 

suitable for rapidly screening of large numbers of samples [7].The Furrier Transformed Infrared Spectroscopy (FTIR) 

techniques widely used and easy method for the identification and quantification of toxic substances and other 

secondary metabolites produced by pathogens. FTIR spectroscopy is one of the methods that have been successfully 

used for detecting and identifying microorganisms, especially in food products [8, 9]. Some of these studies showed 

that discrimination was possible not only at the genus level, but also at the species [10, 11] and strain levels. The first 

application of infrared spectroscopy for detecting the microorganisms dates from 1950s [2] published their first work 

on the detection toxic metabolites from Botrytis cinerea and Alternaria tenuissima by infrared spectroscopy. Later, 

[1] have studied the presence of toxic substances in fungal pathogens and demonstrated the structure of suberin. [3, 6] 

studied the presence of toxic substances in Rhizoctonia, Colletotrichum and Verticillium and reported the presence of 

lipids, amide I and amide II through spectroscopy having wave length between 2800 and 3020 cm
-1
. Later, [4] reported the 

presence of toxic substances in Fusarium genus. Recently, [5] reported the stretching frequency of alkaloid and 

terpenoids through FTIR analysis and explained that the compounds in the crude extract more possibly may belong to 

alkaloid or terpenoid group of compounds. Stretching frequency at 1664.62 cm
-1

 confirmed the presence of 

conjugated aromatic compound and six atom ring which gives information about basic ring structure system of 

alkaloid and terpenoid structure.  

Experimental Methods 
Collection and Isolation of Pathogen  

Field level collection conducted during Kharif in major finger millets growing regions of Tamil Nadu and the blast 

infected finger millet plant parts viz., either leaf or neck or finger blast infected samples were taken based on the crop 

stage available at the time of survey. In addition, the blast infected finger millet samples were also received from the 

All India Coordinated Small Millet Improvement Project (AICSMIP) centers in India. The collected samples were air 

dried, separately bagged and stored under refrigerated condition at 4
°
C for the isolation of the pathogen. The pathogen 

(M. grisea) of different samples collected was isolated by using the standard tissue isolation method [12]. Blast 
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infected plant tissues were cut into small pieces and washed in sterile water twice and surface sterilized with 0.1 per cent 

mercuric chloride solution for 30 sec. followed by rinsing in sterilized water twice and transferred to plates containing Oat 

Meal Agar Medium (OMA). After 4 days for obtaining monoconidial isolate, a dilute spore suspension was prepared in 

sterilized distilled water and plated onto 0.8% water agar in Petri plates. After 15 days of incubation at 26 ± 1
°
C, single 

germinating conidium was marked under a microscope and transferred to fresh Petri dish containing OMA medium and then 

the plates were incubated at 26 ± 1
°
C for 10 days to get monoconidial isolates [13]. Among these, the most virulent pathogenic 

isolates from leaf, neck and finger blast were chosen for further studies.  

Sample preparation 

Samples of these M. grisea fungi were purified from the culture broth by spinning at 2000 rpm for 5 min, washing 4 

times with H2O and the pellet was suspended in appropriate volume of H2O (about 1 ml). For attenuated total 

reflection (ATR) examination about 500 μl of the above obtained fungal suspension as flattened and spread on the 

ATR crystal producing a flat layer covering the entire crystal. Then the samples were air dried for about 30 minutes 

and examined by ATR sampling technique used in conjugation with infrared spectroscopy. 

FTIR spectral measurement 

The ATR measurements were performed using FTIR spectrometer (Bruker Tensor 127). Measurements were performed 

by using the FTIR–ATR with a LN2 cooled MCT detector (mercury-cadmium-telluride). Around 128 coded scans 

were collected in each measurement in the wave numbers region 600– 4000 cm
−1

, after the samples were dried. 

Spectral resolution was set at 4 cm
−1

. All spectra were baseline corrected and vector normalized using OPUS 

software. 

Results 
Detection of volatile compound from M. grisea toxin through Fourier Transform Infrared (FTIR) spectroscopy 

The aqueous extract from blast infected leaf, neck and finger regions produced various functional groups of toxins 

and they were analyzed through FTIR spectroscopy analysis. The leaf blast extract showed spectral peaks at 3718  

cm
-1

 (Phenols), 2924 cm
-1

 (Lipids), 1728 cm
-1

 (Alkyl groups), 1450 cm
-1

, 1373 cm
-1

, 1219 cm
-1

 (Amide I, II) and 756 

cm
-1
 (Alkenes). The neck blast extract showed peaks at 3726 cm

-1 
(Phenols), 2924 (Lipids), 1604 (Amide I), 1458 cm

-1
 

(Amide II, III), 840 cm
-1
 (Carbohydrate) and 756 cm

-1
 (alkenes) and the finger blast extract showed peaks at 3726 cm

-1
 

(phenols), 2924 cm
-1

 (lipids), 1720 cm
-1

 (alkyl group), 1373 cm
-1

 (Amide II, III) and 756 cm
-1

 (alkenes). Among the 

three regions, the toxin produced at leaf region by M. grisea was higher with proof in spectral peak intensity become 

strong compared with finger and neck region toxin functional groups which were analyzed through FTIR 

spectroscopy (Tables 1-3) (Figures 1-3). 

 
Figure 1 FT-IR analysis showing characteristic absorption peaks of crude toxin from leaf blast causing M. grisea 
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Table 1 FT-IR spectroscopic analysis of crude toxin from leaf blast pathogen showing IR range and functional groups 

 

S.No. Wave number (cm
-1

) Intensity Bond Functional groups 

1 3718.76 Weak O-H stretch Phenols 

2 2924.04 Strong C-H stretch Lipids 

3 2845.93 Strong 

4 2314.58 Medium 

5 1728.22 Strong C=H stretch Alkyl groups/lipids 

6 1450.22 Strong  

C-H stretch 

 

Amide II, III – Protein 7 1373.32 Strong 

8 1219.01 Strong 

9 833.25 Medium C-O stretch Carbohydrate 

10 794.67 Strong CH2 bending Alkenes 

11 756.10 Medium 

 
 

Figure 2 FT-IR analysis showing characteristic absorption peaks of crude toxin from neck blast causing M. grisea 

 

 

Table 2 FT-IR spectroscopic analysis of crude toxin from neck blast pathogen showing IR range and functional 

groups 
 

S.No. Wave number (cm
-1

) Intensity Bond Functional groups 

1 3726.47 Weak O-H stretch Phenols 

2 2924.09 Strong C-H stretch Lipids 

3 2854.65 Strong 

4 2345.44 Weak 

5 1722.79 Strong C=H stretch Alkyl groups/lipids 

6 1604.71 Medium C-O stretch Amide I – Protein 

7 1458.18 Strong C-H stretch Amide II, III – Protein 

8 1318.03 Medium 

9 1219.01 Strong 

10 840.96 Medium C-O stretch Carbohydrate 

11 756.10 Medium CH2 bending Alkenes 
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Figure 3 FT-IR analysis showing characteristic absorption peaks of crude toxin from finger blast causing M. grisea 

Table 3 FT-IR spectroscopic analysis of crude toxin from finger blast pathogen showing IR range and functional 

groups 

S.No. Wave number (cm
-1

) Intensity Bond Functional groups 

1 3726.47 Weak O-H stretch Phenols 

2 2924.09 Strong C-H stretch Lipids 

3 2314.58 Weak 

4 1720.50 Strong C=H stretch Alkyl groups/lipids 

5 1450.47 Medium C-H stretch Amide II, III – Protein 

6 1373.32 Strong 

7 1219.01 Strong 

8 1111.10 Medium C-O stretch Carbohydrate 

9 833.25 Medium 

10 756.10 Strong CH2 bending Alkenes 

11 717.52 Medium 

Discussion 

Crude toxin obtained from culture filtrate and infected sample was purified and analyzed through FTIR, which 

indicated number of spectral peaks. The present data revealed that FTIR spectroscopy has been widely used to 

provide information on a range of vibrationally active functional groups including O-H, C-H, C=H and CH2. FTIR 

spectra of aqueous extracts of leaf, neck and finger blast infected samples have been detected in the region from 

3718.76 to 756.10 cm−
1
, 3726.47 to 756.10 cm−

1
 and 3726.47 to 717.52 cm−

1
 in the different frequency ranges 

respectively. Similar results were reported that in higher wave numbers region, the spectrum is dominated by the 

water absorption bands at 3350 cm
−1 

[3,6]. Bands at 2849, 2917 and 3008 cm
−1

 are mainly due to lipids absorbance in 

Fusarium genus. Also observed a higher wave numbers region (2800–3020 cm
−1

) and the low wave number region 

(1740 cm
−1

) in the Fusarium genus based spectra [4]. While in an another study, three genera viz., Rhizoctonia, 

Colletotrichum and Verticillium have some differences in the lipids, Amide I and Amide II bands. Stretching 

frequency at 1664.62 cm
-1

 has confirmed the presence of conjugated, aromatic and six atom ring which gives 

information about basic ring structure system of alkaloid and terpenoid [5]. 

Conclusion 

The identification and discrimination of pathogenic microorganisms using FTIR spectroscopic techniques is most 

attractive and valuable technique because of its rapid-sensitivity and low cost. It gives a unique finger print detection 
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of given sample even in a large scale screening and routine application. In this present FTIR analysis given the profile 

of functional group exist in the toxic metabolites produced by the Magnaporthe grisea, these results is most useful for 

the development of rapid diagnostic kit, reduce the virulence of pathogen by altering the nature of toxic substances 

and also favors to develop the integrated disease management module under field condition. 
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