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Introduction 

Plants contain various macronutrients among all phosphorous is a key macronutrient that plays a significant role in 

metabolism with many physiological functions, such as protein synthesis, transport of fatty acids, appetite control, 

direct involvement in cellular activities that needs the energy, regulation of osmotic stress as well as acid-base 

balance, amino acid interchange, proliferation and cell differentiation. Nucleic acids, cell membranes, and structural 

components of skeletal tissues contain phosphorus. Phytic acid (Myo-inositol 1,2,3,4,5,6 hexa-phosphoric acid, IP6) 

is the main storage form of phosphorous about 65-80% of total phosphorous in grains present in the form of phytic 

acid phosphorous [1]. In cereals, legumes, oilseeds and nuts phytic acid phosphorous accounts for 1–5% of their total 

weight [2] Phytate synthesis occurs in endoplasmic reticulum before its deposition in protein storage vacuoles [3]. 

Phytate is stored in globoid crystals, which are subcellular inclusions located within the protein storage vacuole [4]. 

Phytate accounts for 60 to 80% of the dry weight of globoid crystals. Phytic acid act as an anti-nutritional factor due 

to negative charge of phosphate groups present on it. It bound with metal ions like calcium, magnesium, iron etc. and 

causes the unavailability of many metal ions [5]. Further at pH below their isoelectric point protein carrying net 

positive charge will bind to negatively charged phytate molecules to form binary protein phytate complexes. When 

the pH of proteins exceeds their isoelectric point and they have a net negative charge, a cationic bridge (usually Ca+2) 

connects phytate and protein in ternary complexes [6]. Calcium binding to phytate lowers trypsin activity as trypsin 

requires calcium ions to function. This is accomplished by reducing the digestibility of proteins. Phytate consumption 

lowers blood glucose response in humans. This could be due to phytate forms a complex with feed carbohydrates, 

lowering solubility and impairing glucose digestion and absorption [7]. Phytate also forms liphophytin (complex with 

lipids and their derivatives). Lipid and calcium phytate may be involved in the development of metallic soaps in the 

intestinal lumen of chickens, which is a key constraint for lipid-derived energy use [8]. In monogastric animals like 

poultry, pig and human beings do not have ability to digest phytic acid due to the absence of phytase enzyme. These 

animals are unable to digest phytic acid which cannot be absorbed in digestive tract and released into environment 

through and causes several environmental effects [9]. So, in order to meet their daily needs addition of external source 

of feed having phosphorous and other and other micronutrients is required but which leads to increase in costs of 

diets. The reduction of phytic acid content in feed and food by enzymatic treatment is attractive alternative method. It 

not only reduces the environmental phosphorous 2 pollution but also improves the nutrition value of food [10, 11]. 
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Phytic acid 

Phytic acid is the major storage form of phosphorus in cereals, oilseeds and legumes (Figure 1). It plays important 

role in several physiological functions and also significantly influences the nutritional and functional properties by 

forming complexes with minerals and proteins [12]. Phytic acid is myoinositol 1, 2, 3, 4, 5, 6-hexakis dihydrogen 

phosphate [13].  

 
Figure 1: Structure of Phytic acid 

Sources of phytic acid 

Phytic acid is the major storage form of phosphorous comprising 1–5 % by weight in cereals, legumes, oil seeds and 

nuts [14]. Phytate rapidly accumulates in seeds during the ripening period. It is stored in leguminous seeds and oil 

seeds in the globoid crystal within the protein bodies. Sources of phytic acid in food are cereals, legumes, oilseeds and 

nuts are important for human nutrition (Table 1). It represents approximately 40 and 60% of total calorie intake for 

human in developed and developing countries respectively [15]. Among different antinutrients, phytic acid is found in 

most of the ingredients commonly used in aquafeed like barley, rice, sorghum, wheat, maize, gram, groundnut, 

rapeseed, soybean, cottonseed, and sesame. Most foods of plant origin contain 50–80% of their total phosphorus, or 

even higher in selected varieties, as phytate [16]. The amount of the so-called antinutrient compounds present in 

malanga tubers interferes with the bioavailability of some nutrients and it could affect the food products acceptance 

[17]. The amount of oxalates (one of the factors implicated in acridity), phytates and tannin content varied in malanga 

depending on the varieties, climate, irrigation conditions, location, type of soil, and growing season of the plant. 

Table 1 Characterization of phytase from different sources by different scientists 

S.N Phytase source Optimum 

pH 

Optimum 

temp. 

Km Vmax Specific 

activity 

Ref 

1 A. oryzae SBS50 5.0 50 C 1.14 mM 58 U/mL 5.68 U/mg [51] 

2 Geobacillus sp.TF16 4.0 85 C 1.31 mM 526.28 U/mL 219 U/mg [61] 

3 Soybean 5.0 60 C 5.0 mM 0.63U/mL 0.17 U/mg [62] 

4 Bacillus licheniformis 6.0-6.5 60 C 1.06 mM 1.32 U/mL 0.77U/mg [11] 

5 Soil metagenome 5.6 45 C 1.29 mM - 13.89 U/mg [63] 

6 Vigna umbellate 4.0 40C 0.62 mM 3.42 U/mL - [64] 

7 Aspergillus niger S2 5.0 40 C - 196 U/mL 52.8 U/mg [65] 

8 Aspergillus niger 5.0 58 C 0.929 µM 52 nkat/cm³ 190 nkat/mg [66] 

9 Sporotrichum thermophile 5.0 60 C 0.156 mM 83 nmLmg⁻1s⁻1 3.82 U/mg [67] 

10 Enterobacter 6.0 55 C 0.48 mM 0.157 U 1.56 U/mg [12] 

11 Aspergillus niger 5.5 50 C 56 µM 401 U/mL - [68] 

12 Aspergillus foetidus 5.5 37 C 42 µM 20 U/mL - [69] 

13 Rhodotorula mucilagiosa 5.0 50 C - 205 U/mL 31635 U/mg [22] 

14 Lactobacillus coryniformis 5.0 60 C 1.0 mM 3736 U/mL 21.22 U/mg [56] 

Physiological functions of phytic acid 

Phytic acid plays an important role in several physiological activities. These include phosphorus storage, energy 

storage, cation storage, myo-inositol storage, and dormancy initiation [18]. Cations such as calcium (Ca), iron (Fe), 

magnesium (Mg), copper (Cu), zinc (Zn) and potassium (K) are strongly chelated by phytic acid to form their 
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respective soluble salts [19]. It acts as a natural antioxidant in dormant seeds. This antioxidant property of phytic acid 

is due to the fact that it effectively prevents the generation of iron-driven hydroxyl radicals [20]. Phytic acid is present 

ubiquitously in eukaryotic cells in form of monovalent and divalent salts [21]. In plant and animal cells, phytic acid, 

especially inositol triphosphates, plays a crucial role in signalling and cell function regulation [22]. Phytate inhibits 

kidney stone formation by complexing with calcium and preventing crystallization. Younger women (NHS II) with 

higher phytate intake had a lower risk of kidney stones compared to those with lower phytate intake [23].  

Pathways and Enzymes Involved In Phytate Synthesis 
Biosynthesis of phytic acid 

Various factors such as the geographical location of cultivated crop, climate and environmental variations, type of 

soil, fertilizer use, irrigation conditions, and plants genotypic variation effect the synthesis of phytic acid. The 

synthesis of phytic acid mainly occurs in cytosol by two pathways, i.e., lipid dependent and lipid independent manner 

(Figure 2). The precursors for these pathways are different from each other. Phosphatidylinositol and 

Phosphatidylinositol phosphate are precursors for lipid dependent pathway, whereas myo-inositol and soluble inositol 

phosphates for lipid independent pathway. The synthesized phytic acid, as well as it’s salt and protein complexes are 

stored in globoids located inside protein bodies [24]. It was reported that functional wheat inositol pentakisphosphate 

kinase (TaIPK1) is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains 

elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat [25]. 

Inositol lipid-independent pathway 

In this pathway, after InsP3s formation, InsP3s and myo-inositol-4-phosphate (InsP4s) are converted into myo-

inositol-1,3,4,5,6-5-phosphate [Ins(1,3,4,5,6)P5] catalysed by inositol tris/tetrakisphosphate kinase (ITPK), also 

known as inositol-1,3,4-triskisphosphate 5/6-kinase (ITP5/6 K). This pathway involves the sequential phosphorylation 

of 1 D-myo-inositol 3-phosphate (Ins(3)P) leads to formation of phytic acid [26]. 

Lipid dependent pathway 

This pathway involves the sequential phosphorylation of inositol 1,4,5-trisphosphate (Ins (1,4,5) P3), which leads to 

the formation of phytic acid. In this pathway, Phospholipase C enzyme is involved and hence, called the lipid 

dependent pathway [27]. 

 
Figure 2 Phytic acid synthesis pathways in plants. The enzymes catalysing the reactions are as follows: MIPS- Myo-

inositol-3-phosphate synthase, IMP- Inositol monophosphate phosphatase, IPK2- Inositol 1,4,5-tris-phosphate kinase, 

IPK1- Inositol 1,3,4,5,6-pentakisphosphate 2-kinase. 
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Anti-nutritive effects of phytic acid 

Phytic acid has been shown to have a strong antinutritive effect [28]. The antinutritive effect of phytic acid is because 

of unusual molecular structure as on complete dissociation, the six phosphate groups of phytic acid contain a total of 

twelve negative charges. It effectively binds to different mono, di- and trivalent cations and their mixtures, forming 

insoluble complexes [29]. The formation of insoluble phytate mineral complexes in the intestinal tract prevents 

mineral absorption. It reduces the bioavailability of many essential minerals [15]. Phytic acid interacts with proteins 

over a wide range of pH, forming phytate protein complexes. At acidic pH, phytic acid has a strong negative charge 

due to complete dissociation of phosphate groups. Under these conditions, there is formation of ionic bonding 

between the basic phosphate groups of phytic acid and protonized amino acid residues [29]. In addition to forming 

complex with minerals and proteins, phytic acid cause the decrease in the activity of many digestive enzymes by 

interacting with them such as trypsin, pepsin, α- amylase and β-galactosidase, lead to decrease in activity of these 

important digestive enzymes [30]. Phytate also interacts with proteins, which may negatively affect protein 

digestibility. Strong evidence exists which shows negative impact on protein digestibility because of phytate–protein 

interactions in vitro. The extent of this effect depends on the protein source. The inhibition of digestive enzymes such 

as alpha-amylase, lipase, or proteinase by phytate may also be of significance, as shown in in vitro studies [31]. 

Phytic acid is the major storage form of phosphorous in cereals, legumes, oil seeds and nuts. Phytic acid is known as a 

food inhibitor as it chelates with micronutrient and prevents it’s bio-availability for monogastric animals, including 

humans, because they lack enzyme phytase in their digestive tract [15]. 

Phytase 

Phytase (Myo-inositol 1,2,3,4,5.6-hexakisphosphate phosphohydrolase) is a special group of phosphatases involved in 

catalyzing the step wise removal of phosphate group from phytic acid and forms lower myo-inositol phosphates, free 

myo-inositol and mono phosphate [14]. Phytase enzyme has been found in plants, animals and micro-organisms like 

yeast, fungi and bacteria. There are four different classes of phytases which have been classified based on catalytic 

mechanisms, 3-D structure and specific sequence attributes, they are: Histidine acid phosphatases (HAP), Beta 

propeller phytases (BPPhy), Purple acid phytases (PAPhy) and protein tyrosine phosphatase like-Cysteine phytases 

(Cphy) [32]. The HAPhy class contains the vast majority of known phytases. These HAPhy have been isolated from 

bacteria, plants, yeast, and filamentous fungi [10]. The first example of ꞵ-propeller phytase were orginally cloned 

from Bacillus species [33]. These enzymes are known as BPPs because of their three-dimensional structure resembles 

that of a propeller with six blades [34]. BPPhy plays important role on phytate-phosphorus cycling because this is 

major phytate degrading enzyme in soil and water [35]. Purple acid phosphatases have recently separated from 

cotyledons of germinating soybean. Protein tyrosine phosphatase like phytases is newly discovered class. This 

phytase have been isolated from bacteria, which normally lives in gut of ruminant animals [36]. 

Phytase is an enzyme that is used in a wide range of industries. According to worldwide market research, 

the animal feed enzymes business generated $1.1 billion in sales in 2016 and is expected to exceed $2 

billion by 2024 [37]. Cellulase, xylanases, phytases, carbohydrases and proteases are some of the enzymes 

utilised in the animal feed industry. However, among all enzymes, the phytase segment has the highest 

revenue share (83%) of the whole industry [38]. The most important industrial application of phytase is to 

act as a feed supplement for animals including chicken, fish and pig [39]. In food processing industries, the 

products which are prepared from phytate rich compounds for human consumption are subjected to 

hydrolysis of phytate, which increases the content of phosphorous and the availability of minerals, proteins 

and vitamins to human body [40]. The instability of phytase is a key issue in commercial applications since 

the industrial processes need high temperatures, pressures, and shear forces to pelletize the feed, resulting in 

phytase activity being reduced [41]. A number of phytase genes and proteins have been identified from 

plants and microbes including bacteria, yeast, and fungi. The first and most probably the best characterized 

phytase is Aspergillus niger PhyA which is encoded by a 1.4 kb DNA fragment and has a molecular mass of 

80 kDa, with 10 N-glycosylation sites [42]. 

Sources of Phytases  

Phytate-degrading enzymes are widespread in nature, occurring in plants, microorganisms, as well as in some animal 

tissues. Phytases can have a variety of biophysical and biochemical features depending on their source and expression 

host [43]. 
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Fungal phytases 

Fungal sources are mainly used for phytase production among all microorganisms. They have a molecular mass of 

35–500 kDa, and are optimally active within the pH and temperature ranges of 4.5 to 6.0 and 45 to 70°C, respectively 

[5]. Shieh and Ware (1968) reported the first systematic investigation of fungal phytase, in which numerous 

microorganisms were tested for extracellular phytase synthesis, and Aspergillus ficuum NRRL 3135 proved to be 

highly efficient [44]. Aspergillus species is still favoured for the synthesis of phytase, other enzymes, and organic 

acids. The basis for this decision is it’s generally recognized as safe status (GRAS), having wider knowledge of 

growth cultivation, and high secretory potential [45]. The following are some of the fungal sources of phytase: 

Penicillium oxalicum [46], Mucor hiemalis [47], Aspergillus tubingensis SKA [48], Rhizopus oryzae [49], and 

Aspergillus oryzae SBS50 [50]. 

Yeast phytases 

Yeasts are suitable sources of phosphatase and phytase study due to their non-pathogenic, however they were not 

been used fully. Although yeasts have been discovered to be rich genetic sources as they were resistant to heat, but 

there phytases were not properly used at industrial level. Kodamea ohmeri BG3, yeast strain was isolated from the 

intestine of marine fish, it showed maximum enzyme activity at pH 5.0 and temperature of 65C [52]. The following 

are some of the yeast sources of phytase: Hanseniaspora guilliermondii [53], Saccharomyces cerevisiae [54], 

Rhodotorula mucilaginosa JMUY 14 [22], and Debaryomyces castellii [55]. 

Bacterial phytases  

Bacterial phytases are substrate specific, necessitating Ca2+ ions for activity. Furthermore, bacterial phytases are 

resistant to the action of proteases found in the gastrointestinal tract of monogastric animals. They have a molecular 

mass of 37–55 kDa, and are usually active within the pH and temperature ranges of 4.5 to 8.5 and 25 to 70°C, 

respectively [38]. The following are some of the bacterial sources of phytase: Lactobacillus coryniformis [56], 

Escherichia coli [57], and Lactobacillus plantarum [58]. 

Plant phytases 

Most of plant phytases are optimally active within the pH and temperature ranges of 4.0 to 7.2 and 45 to 60°C, 

respectively. From the pollen grains of the Lilium longiflorum, a phytase was isolated which is active under alkaline 

conditions [59]. The following are some of the plant sources of phytase: Arabidopsis thaliana AtPAP15 [60], and 

Medicago turniculata MtPHY1 [26]. 

Animal phytases 

Only few animal phytases have been identified, [61] which showed the presence of the first animal phytase in the 

blood and liver of calves. 

Applications of Phytase  
Nutritional value of phytase in animal feed 

HAPs are the most commonly utilized phytases in animal feeds. Dietary phytase was added primarily to release feed 

phytate-phosphorus, eliminating the need for inorganic phosphorus supplementation to meet the phosphorus 

requirements of the target animals [71,72]. About 300–600 phytase activity units/kg of diet release nearly 0.8 g of 

digestible phosphorus and can substitute either 1.0 or 1.3 g/kg of phosphorus from mono and dicalcium phosphate, 

respectively [73]. Supplemental phytase, on the other hand, improves iron, calcium, and zinc utilization by animals 

[74]. Supplementing with phytase increases calcium digestibility from 60 to 70% in control diets to 70–80% in 

experimental diets. Copper or manganese, on the other hand, have less uniform digestibility responses, and phytase's 

ability to enhance amino acid availability still has been controversial [75]. 

The environmental and economic benefits of feed phytase 

Numerous animal experiments had demonstrated that when phytase was added to feed at a rate of 500– 1000 phytase 

units/kg, it can substitute for inorganic phosphorous supplementation in pigs and poultry, reducing phosphorous 

excretion by around 50% [11]. Phytase is an enzyme that is used in a variety of industries. According to worldwide 
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market research, the animal feed enzymes business generated $1.1 billion in sales in 2016 and is expected to exceed 

$2 billion by 2024 [37]. Cellulase, xylanases, phytases, carbohydrates and proteases are some of the enzymes utilized 

in the animal feed industry. However, among all enzymes, the phytase segment has the highest revenue share (83%) 

of the whole industry [38]. 

Other applications 

There is high demand for phytase in industrial applications such as food processing and biofuel production [76]. 

Many successful attempts have been made to use phytase in brewing to enhance alcohol production [77]; in bread 

making to enhance proofing time, crumb firmness, width/height ratio of bread slice, and specific volume [78]; in soy 

milk dephytination [79] and in the separation of soybean b-conglycinin and glycinin [39]. 

Conclusion 

Phytic acid being the major storage form of phosphorous in grain plants which constitutes about 65-80% of total 

phosphorous. Mostly animals and humans depend on plant-based diet for phosphorous which is stored in form of 

phytic acid. Phytic acid is usually considered as anti-nutritional factor, but in small amount is beneficial for animals 

and humans. Phytic acid have immunological properties also which include anti-bacterial, anti-angiogenic, 

hypolipidemic and anti-diabetic. The interactions of phytic acid with dietary minerals have many beneficial health 

effects in food processing and nutritional implications. Phytic acids possess chelating property which is usually 

considered as detrimental for human health, but it is one of the powerful abilities to bind minerals. Various methods 

are utilized for fine tuning phytic acid in food products which includes soaking, fermentation, germination, treatment 

with phytase enzyme, malting, milling and other food processing methods. There is requirement of optimum level of 

phytic acid in food products and above certain level it becomes harmful for animal and human health. The bio-

fortification is important method which should be done in moderation to prevent excessive loss of phytic acid from 

the grain to retain its beneficial properties in staple crops. There are both positive and negative impacts of phytate, but 

still there is requirement of further insights about the dosage healthy for human beings and clinical trials should be 

conducted for validation. 
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