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Introduction 

Among the various major cereal crops wheat (Triticum aestivum L.) is one of the most important cereal crop 

worldwide and grown under both irrigated and rain fed conditions. It is the staple food for 40% of the world’s 

population [1, 2]. Currently it is growing as most important cereal crop on a large scale [3], because of its significance 

as cash crop and major role in supplying the dietary requirements of the society. It provides 21% of the total food 

calories and 20% of the protein for more than 4.5 billion people in 94 developing countries [4, 5]. Global wheat grain 

production must increase 2% annually to meet the requirement of consistently increasing world population (around 9 

billion) till 2050 [6-8]. India is second largest producer of wheat in the world. The area, production, and productivity 

of wheat in India in 2017-18 was 29.58 million ha, 99.7 million ton and 33.71 qtls/ha, respectively [9]. It is grown in 

all the regions of the country and the states, namely, Uttar Pradesh, Punjab, Haryana, Madhya Pradesh, Rajasthan, 

Bihar, Maharashtra, Gujarat, West Bengal, Uttarakhand and Himachal Pradesh together contribute about 98% to the 

total wheat production of the country.  

Quantitative and qualitative characters of grain are the principal characters of a cereal crop [10, 11]. The 

quantitative characters generally are affected by a number of yield contributing characters. Information regarding 

mutual association between yield and yield components is necessary for effective utilization of the genetic stock for 

crop improvement. The presence of genetic diversity and genetic relationships among genotypes is a prerequisite and 

paramount important for successful wheat breeding programme. The success of a breeding program depends largely 

upon the amount of genetic variability present in the population and the extent to which the desired traits are heritable 

[12]. Genetic divergence refers to the genetic distance between species or between populations within a species. 

Genetic distance can be used to compare the genetic dissimilarity between different species. Developing hybrid wheat 

varieties with desirable traits require a thorough knowledge about the existing genetic variability [13]. The statistical 

analysis revealed that the diverse clusters. Out of those, closely internal cluster distances, may generate a wide range 

of transgressive segregants for development of high yielding wheat varieties [14]. Several genetic variability studies 
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have been conducted on different crop species based on quantitative and qualitative traits in order to select genetically 

distant parents for hybridization [15].  

The conventional breeding methods are not highly reliable as they are affected by environmental conditions [16]. 

However, molecular markers methods are more stable and they can provide detailed characterization of genetic 

resources. The main applications of molecular markers can be classified into two categories: (a) assessment of genetic 

diversity and (b) identification and characterization of genomic regions controlling the trait of interest [17-20]. 

Microsatellite markers are short repeating nucleotide DNA sequences [21]. They have high reproducibility, are multi-

allelic, specific to genes, co-dominant and highly polymorphic [22]. SSR markers have been used to characterize 

genetic diversity in wild relatives [23]. The SSR marker platform, which can be developed using genomes (SSRs) or 

transcriptomes (EST-SSRs), is a powerful tool for examining population genetic diversity [18]. Generally, SSR 

markers are suitable for parental identification, pedigree analysis, and development of newly improved varieties as 

they are independent of environmental conditions and plant development stage. Thus, SSR markers are a useful tool 

to select a desirable alleles or traits. A tight linkage relationship may be established between the SSR marker and the 

gene controlling the trait for better understanding [24]. Microsatellites (simple sequence repeat [SSR]) were used in 

the this study DNA based molecular markers are the direct source to measure the genetic diversity. 

Material and Methods 
Plant Material 

This investigation was carried out at the experimental field station of the Department of Biotechnology, SVPUA&T, 

Meerut. To analyse the genetic diversity of Indian wheat cultivars a total of sixty varieties were taken from 

Department of genetics and plant breeding, SVPUA &T, Meerut and NBPGR, New Delhi. All varieties were grown 

and maintained in the field under normal condition. 

DNA isolation 

Genomic DNA was isolated from fresh leaves of each 60 varieties viz. K-9423(UNNATHALNA),AAI-12,SL-1, LN-

26P,LN-15B,UP-2425, LN-15C, K-9644, K-9162, W-7,HUW-533,SL-2,UP-2565,DBW-835,WCW-953,K-710,K-

9397,K-616,NW-1076, SL-7, W-3,K-617,LN-16B,SL-4,W-4,K-424, WCW-984, AAI-2, HUW-516,SL-5,K-

8962,HUW-846,HUW-825,K-7903(HALNA),NW-2036,HUW-637, K-9533(NAINA), NW-1014, HUW-638,HUW-

234,HUW-213, AAI-336,SL-15,K-712, DBW-17, DBW-16, KRL-213, RAJ-3765,KHARCHIA-65, KRL1-4, KRL-

19, HD-2009,WH-1021, PBW-226, PBW-343, PBW 373,PBW-502,PBW-550,WH-711, KRL-210 and preserved 

under -80 deep fridge. The genomic DNA from the leaves were isolated using the standard protocol [25], with slight 

modification. In this method Cetyl Trimethyl Ammonium Bromide (CTAB) was used as a detergent to lyse the wall 

of cells for release of DNA. 

Polymerase Chain Reaction 

For SSR analysis a total of 50 wheat specific primers were used (Table 1). DNA amplification reaction for SSR 

primers were carried out according to standard procedure in 20µl. The SSR-PCR, the reaction profile consisted of an 

initial denaturation step of 4 min at 95ºC, followed by a 1 min denaturation step at 95ºC, annealing for 1 min 40 sec. 

at 40ºC and extension for 2 min at 72ºC. A total of 35 cycles were performed followed by 10 min extra extension step 

after the last cycle. Amplified PCR products were separated on 1.5 % (w/v) agarose gel in standard 1 X TBE (pH 8).  

SSR data analysis 

The ability of primers to resolve the different varieties, the resolving power (Rp) for each primer was calculated 

following [26] method as Rp = Ib (band information). Resolving Power is calculated as 1-[2 x (0.5-p)], p being the 

proportion of the 60 varieties containing the bands and Gene Diversity is calculated as 1-∑ pi
2
 [27]. The bands were 

scored as present (1) or absent (0) for each DNA sample with the all 50 SSR for wheat specific primers. 

Amplification was performed twice and only reproducible amplifications products were included in the data analysis. 

Similarity matrix using the similarity coefficient of [28] was constructed from the whole data. Pair wise distances 

between DNA accessions were calculated and analysed using the Unweighted Pair Group Method Arithmetic average 

(UPGMA) [29]. Clusters were analysed using the computer program NTSYS-PC, version 2.11s [30]. In some cases 

no band were observed, possibly due to insufficient homology between the primer and DNA template. There is also 

the possibility that this situation might have occurred by failure of the PCR caused by some other region as well. 
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Table 1 List of SSR primers 

S. N. Locus Forward Primer  Reverse Primer 

1 Xgwm425 GAG CCC ACA AGC TGG CA  TCG TTC TCC CAA GGC TTG 

2 Xgwm445 TTT GTT GGG GGT TAG GAT TAG  CCT TAA CAC TTG CTG GTA TGG A 

3 Xgwm601 ATC GAG GAC GAC ATG AAG GT  TTA AGT TGC TGC CAA TGT TCC 

4 Xgwm609 GCG ACA TGA CCA TTT TGT TG GAT ATT AAA TCT CTC TAT GTG TC 

5 Xgwm674 TCG AGC GAT TTT TCC TGC TGA CCG AGT TGA CCA AAA CA 

6 Xgwm630 GTG CCT GTG CCA TCG TC CGA AAG TAA CAG CGC AGT GA 

7 Xgwm569 GGA AAC TTA TTG ATT GAA AT  TCA ATT TTG ACA GAA GAA TT 

8 Xgwm582 AAG CAC TAC GAA AAT ATG AC TCT TAA GGG GTG TTA TCA TA 

9 Xgwm565 GCG TCA GAT ATG CCT ACC TAG G AGT GAG TTA GCC CTG AGC CA 

10 Xgwm624 TTG ATA TTA AAT CTC TCT ATG TG  AAT TTT ATT TGA GCT ATG CG 

11 Xgwm495 GAG AGC CTC GCG AAA TAT AGG  TGC TTC TGG TGT TCC TTC G 

12 Xgwm415 GAT CTC CCA TGT CCG CC  CGA CAG TCG TCA CTT GCC TA 

13 Xgwm547 GTT GTC CCT ATG AGA AGG AAC G  TTC TGC TGC TGT TTT CAT TTA C 

14 Xgwm513 ATC CGT AGC ACC TAC TGG TCA  GGT CTG TTC ATG CCA CAT TG 

15 Xgwm456 TCT GAA CAT TAC ACA ACC CTG A  TGC TCT CTC TGA ACC TGA AGC 

16 Xgwm341 TTC AGT GGT AGC GGT CGA G  CCG ACA TCT CAT GGA TCC AC 

17 Xgwm312 ATC GCA TGA TGC ACG TAG AG  ACA TGC ATG CCT ACC TAA TGG 

18 Xgwm349 GGC TTC CAG AAA ACA ACA GG  ATC GGT GCG TAC CAT CCT AC 

19 Xgwm473 TCA TAC GGG TAT GGT TGG AC  CAC CCC CTT GTT GGT CAC 

20 Xgwm358 AAA CAG CGG ATT TCA TCG AG  TCC GCT GTT GTT CTG ATC CT 

21 Xgwm339 AAT TTT CTT CCT CAC TTA TT  AAA CGA ACA ACC ACT CAA TC 

22 Xgwm376 GGG CTA GAA AAC AGG AAG GC  TCT CCC GGA GGG TAG GAG 

23 Xgwm319 GGT TGC TGT ACA AGT GTT CAC G  CGG GTC CTG TGT GTA ATG AC 

24 Xgwm320 CGA GAT ACT ATG GAA GGT GAG G ATC TTT GCA AGG ATT GCC C 

25 Xgwm153 GAT TCT GTC ACC CGG AAT TC  TGG TAG AGA AGG ACG GAG AG 

26 Xgwm154 TCA CAG AGA GAG AGG GAG GG  ATG TGT ACA TGT TGC CTG CA 

27 Xgwm113 ATT CGA GGT TAG GAG GAA GAG G  GAG GGT CGG CCT ATA AGA CC 

28 Xgwm159 GGG CCA ACA CTG GAA CAC  GCA GAA GCT TGT TGG TAG GC 

29 Xgwm148 GTG AGG CAG CAA GAG AGA AA  CAA AGC TTG ACT CAG ACC AAA 

30 Xgwm135 TGT CAA CAT CGT TTT GAA AAG G  ACA CTG TCA ACC TGG CAA TG 

31 Xgwm10 CGC ACC ATC TGT ATC ATT CTG TGG TCG TAC CAA AGT ATA CGG 

32 Xgwm5 GCC AGC TAC CTC GAT ACA ACT C AGA AAG GGC CAG GCT AGT AGT 

33 Xgwm120 GAT CCA CCT TCC TCT CTC TC  GAT TAT ACT GGT GCC GAA AC 

34 Xgwm107 ATT AAT ACC TGA GGG AGG TGC  GGT CTC AGG AGC AAG AAC AC 

35 Xgwm122 GGG TGG GAG AAA GGA GAT G  AAA CCA TCC TCC ATC CTG G 

36 CWM-112 TGC AGC CAC AAA ATC CAT C TGC TGC AAT ACA ACA TCC AT 

37 CWM-114 GGG CCC ATT GGA GAA CCT GCA GTG AGC GCC CGT AAT A 

38 CWM-118 TTT CGC AGC CGC AAC TAC C TGA TCT TCC ACG CCG CTA TG 

39 CWM-101 GCC TTC GCC ACC AAC TTC GGC GCG TAA ATC CCC TCT C 

40 CWM-107 GCC GGC TCG CCA TGT TCT CCA CTC ATC ATC TCG ACT CGC CCT 

41 CWM-119 GTC AAC AAC AAC GCC TGG TAA GCG GAA GAA AGA TG 

42 CWM-115 CCT TTC TCA TCC TTG CCA TCC GTT GTT GTG GAA ATG GTT 

43 XGWM276-7A ATT TGC CTG AAG AAA ATA TT AAT TTC ACT GCA TAC ACA AG 

44 XGWM-260-7A GCC CCC TTG CAC AAT C CGC AGC TAC AGG AGG CC 

45 XGWM-635-7D TTC CTC ACT GTA AGG G CAG CCT TAG CCT TGG CG 

46 CWM-103 ATG CAG CAA TCC CCT CCC CCA GTC CCG AGC TTG TAA AA 

47 XGWM-293-7A TAC TGG TTC ACA TTG GTG CG TCG CCA TCA CTC GTT CAA G 

48 CWM-105 GCT GAA GCC ATG CAT AAT AGT CCA GGG GTT TTC CAT CTC C 

49 XGWM-332-7A AGC CAG CAA GTC ACC AAA AC AGT GCT GGA AAG AGT AGT GAA 

50 CWM-110 TCA GGG AAG CAG CGT GTA GAG CGG CCA GTC AGC GCG GGT AAT 
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Result and Discussion 
Molecular characterization using SSR markers 

The characterization of wheat varieties using microsatellite molecular markers systems is important to find out 

genetically diverse wheat varieties useful for breeding programmes for crop improvement. [18, 19, 31]. Fifty SSR 

primers, were used to amplify the genomic DNA of 60 wheat varieties to analyze the genetic diversity (Figure 1 a,b). 

A total of fifty SSR primers generate 66 reproducible and clearly scorable bands across the sixty wheat genotype with 

an average of 1.78 bands per primer. Out of fifty SSR primers, 37 SSR primers were showed polymorphism. The 

average number of polymorphic bands was 1.56 per primer (Table 2). Among the tested SSR primers, thirty seven 

amplified polymorphic SSR loci, polymorphism range from 33.33% to 100 %. Various studies have used SSR 

markers to investigate genetic diversity in cultivated hexaploid wheat varieties of T. aestivum L. [32-34]. The PIC 

values derived from allelic diversity. In this study the PIC value of 37 SSR markers out of fifty is varies from primer 

0.08 to 0.99 with a mean PIC value for SSR primers was 0.619 (Table 2, Figure 2A). The higher PIC value depicted 

the diverse varieties and the lower one depicted closely related genotype. Our results are in accordance with [35] who 

studied the genetic diversity in wheat genotypes using SSR markers. [36] reported comparatively lower range of PIC 

value from 0.27 to 0.54 with an average of 0.38 for 12 wheat genotypes. Resolving power of 37 polymorphic SSR 

primers varies between 0.22 to 5.76 with an average value of 3.13 (Table 2, Figure 2B). The primer Xgwm276-7A 

showed the lowest resolving power, while Xgwm319 showed maximum resolving power. the significant value of 

resolving power indicated the ability of primers to resolve the different closely related varieties of wheat.  

[37] reported 02 to 10 alleles per locus in 122 durum wheat genotypes, with 19 SSR markers. [38] reported an 

average of 4.8 alleles per primers in 10 wheat genotypes, using 12 SSR markers that supports the present study 

results. [39] reported a mean of 2.31 amplified bands (alleles) per marker among 17 coffee genotypes with 16 SSR 

markers and a mean PIC value of 0.43 [40]. [41] found a good correlation between genetic diversity and the 

morphological variability of Moringa genotypes. [42] reported resolving power of the 16 SSR primers ranged from 

1.0 to 5.2 with an average 2.46 on 20 wheat genotypes also. 

 
(a)                (b) 

Figure 1( a&b) SSR profiling pattern of 60 wheat varieties wit primer Xgwm319 and CWM-103.The samples were 

loaded in the sequence: 1. K-9423, 2. AAI-12, 3.SL-1, 4. LN-26P, 5. LN-15B, 6. UP-2425, 7. LN-15C, 8.K-9162, 

9.K-9644, 10.W-7, 11.HUW-533, 12.SL-2, 13.UP-2565, 14.DBW-835, 15.WCW-953, 16.WCW-984, 17.K-710, 

18.K-9397, 19.K-616, 20.NW-1076, 21.SL-7, 22.W-3, 23.K-617, 24.LN-16B, 25.SL-4, 26.W-4, 27.K-424, 28.AAI-2, 

29.HUW-516, 30.SL-5, 31.K-8962, 32.HUW-846, 33.HUW-825, 34.K-7903, 35.NW-2036, 36.HUW-637, 37.K-712, 

38.K-9533, 39.NW-1014, 40.HUW-638, 41.HUW-234, 42.UW-213, 43.AAI-336, 44.SL-15, 45.HD-2967, 46.DBW-

17, 47.DBW-16, 48.KRL-213, 49.RAJ-3765, 50.KHARCHIA-65, 51.W-13, 52.KRL-19, 53.KRL-210, 54. WH-1021, 

55.PBW-226, 56. PBW-343, 57.PBW-373, 58.PBW-502, 59. PBW-550, 60. WH-711 
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Table 2 Polymorphic SSR primers with their Polymorphic Information Content and Resolving Power 

S.N Primer Code Amplified Polymorphic 

 bands 

Monomorphic  

band 

Polymorphism 

% 

PIC Value Resolving 

power 

1 Xgwm425 2 2 0 100 0.62 3.76 

2 Xgwm601 2 2 0 100 0.56 1.12 

3 Xgwm609 1 1 0 100 0.35 1.80 

4 Xgwm674 3 3 0 100 0.92 3.54 

5 Xgwm630 2 2 0 100 0.60 3.80 

6 Xgwm569 1 1 0 100 0.27 1.86 

7 Xgwm582 2 2 0 100 0.52 3.96 

8 Xgwm495 1 1 0 100 033 1.82 

9 Xgwm415 2 2 0 100 0.88 2.62 

10 Xgwm513 1 1 0 100 0.72 1.46 

11 Xgwm456 2 2 0 100 0.91 2.12 

12 Xgwm341 2 2 0 100 0.58 3.84 

13 Xgwm312 2 1 1 50 0.93 3.76 

14 Xgwm349 2 1 1 50 0.81 3.02 

15 Xgwm473 3 3 0 100 0.62 5.64 

16 Xgwm339 5 5 0 100 0.94 5.18 

17 Xgwm376 2 2 0 100 0.85 2.76 

18 Xgwm319 3 2 1 66.66 0.72 5.76 

19 Xgwm320 1 1 0 100 0.08 1.96 

20 Xgwm153 3 1 2 33.33 0.72 5.02 

21 Xgwm113 2 1 1 50 0.62 3.72 

22 Xgwm159 1 1 0 100 0.19 1.9 

23 Xgwm135 2 1 1 50 0.52 3.96 

24 Xgwm10 1 1 0 100 0.08 1.96 

25 Xgwm5 2 2 0 100 0.87 3.84 

26 Xgwm120 2 2 0 100 0.85 3.78 

27 Xgwm107 1 1 0 100 0.16 1.92 

28 Xgwm122 1 1 0 100 0.08 1.96 

29 CWM-112 1 1 0 100 0.67 1.82 

30 CWM-114 1 1 0 100 0.6 1.06 

31 CWM-118 1 1 0 100 0.99 1.97 

32 XGWM276-7A 2 2 0 100 0.99 0.22 

33 CWM-103 1 1 0 100 0.98 0.80 

34 XGWM-293-7A 2 2 0 100 0.58 3.84 

35 CWM-105 2 2 0 100 0.58 3.84 

36 XGWM-332-7A 1 1 0 100 0.26 1.86 

37 CWM-110 1 1 0 100 0.99 0.76 

 Total 66 58 07    

 Average 1.78 1.56 0.18 91.89 0.619 3.127 

Genetic similarity matrix and cluster analysis 

The SSR profile was utilized for estimating pair wise genetic similarity matrix. which was further analyzed using 

UPGMA clustering algorithm program by software programme NTSYS-PC for dendrogram construction 

and cultivator differentiation. Similarity value for all the 60 varieties ranged from 0.72 to 0.98. The minimum 

similarity exhibited by genotype WH711 and SL1. Whereas the maximum similarity was shown by genotype KRL19 

and W13. The UPGMA based clustering grouped 60 wheat varieties in to four major groups i.e. A, B, C and D groups 

(Figure 3). The group A includes 8 varieties namely UP2565, SL2, W7, K9644, HUW533, K9162, HUW638 and 

K9423. The group B subdivided into four sub groups. The sub group B1 includes 15 varieties namely K616, 

HUW825, HUW637, LN16B, K617, WCW953, K712, NW1076, K710, DBW16, HD2009, Kharchia65, K9397, 

WCW984 and DBW835. The sub group B1 further divided into small clusters. The sub cluster B2 includes 9 varieties 

namely HUW516, K424, HUW213, HUW234, W4, SL4, HUW846, K8962 and W3 which are further grouped into 

small clusters. The sub cluster B3 includes only 4 varieties namely AAI-2, NW1014, NW2036 and SL5. The sub 

cluster B4 includes 6 varieties namely RAJ3765, KRL19, W13, KRL213, DBW17 and SL5. The three varieties also 
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included in the main group B but not are the part of any sub group. The present as an individual member as stay at 

one end of the sub cluster. The Main cluster C includes 9 varieties namely AAI336, PBW343, WH711, PBW550, 

PBW502, PBW373, PBW226, WH1021, KRL210 which are further arranged in small clusters. The main cluster D 

grouped 6 varieties namely LN15C, LN15B, UP2425, SL1, LN26 and AAI12.  

 
Figure 2 Graphical representation of (A) Polymorphic Information Content of SSR primers used in wheat genotypes 

(B) Resolving Power of SSR primers used in wheat genotypes 

 

 

Figure 3 Cluster based grouping of 60 wheat varieties on the basis of SSR primers 
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The findings of [43] supported that the cluster obtained based on the similarity matrix, using the UPGMA 

algorithm, in 55 wheat varieties with 20 SSR primers. [44] reported that the UPGMA dendrogram separated the six 

durum wheat varieties into three clusters with 19 sequence-related amplified polymorphic (SRAP) primers. [38] 

reported Similarity value for all the 10 accessions ranged from 0.1 to 0.66 using 12 SSR markers data that supports 

the present study results. [45] found that the cluster analysis broadly grouped 54 genotypes into four clusters. [42] 

reported the similarity value for the 20 varieties taken ranged from 0.35 to 0.90. These all results showed that climatic 

conditions may affect the plant genome which are inherited through genome generation to generation [46, 47].  

Conclusion 

 The present study suggests that microsatellite markers are appropriate to study of genetic diversity among the 

varieties and also able to amplify the different loci of all the 60 wheat varieties. The primer Xgwm276-7A showed the 

lowest resolving power, while Xgwm319 showed maximum resolving power which indicated the ability of primers to 

differentiate the different closely related varieties of wheat. The minimum similarity exhibited between genotype 

WH711 and SL1, whereas the maximum similarity indicated in genotype KRL19 and W13. This will help to identify 

the diverse genotypes and can be helpful for breeding to get good genotypes. 
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