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Introduction 

Energy plays a strategic role for social and economic growth of any country. It serves as sustainable, affordable and 

secure resource for economic development purpose and might be a stipulation for sustainable development [1]. 

Nowadays, energy progress from biobased fuels to inexhaustible and sustainable vitality resources attracted much 

attention. The potentials of other energy resources like biofuels, wind, hydro, solar and geothermal provide the stable 

key to current global energy challenges [2-6]. Currently overuses of energy supply are unsustainable due to 

environment intention like global warming which is predominantly associated with enhancement energy 

consumption. Vitality adequacy and security is a major factor being developed since it gives basic contributions to 

financial advancement that offer essential types of assistance for socioeconomic development to date and provide the 

significance services to boost standard of life at regional, sub-national and national levels [7-8]. In recent years, plant 

based fuels and oils have been explored much to reduce the oil imports as well as to support the agricultural industries 

or other sectors for biofuels production from agricultural products. It has been several advantages in term of 

sustainability like gas emission, reduced pollutant, biodegradability, diversity and increases energy, also for economic 

security purpose [9]. Recently, there is vast synthesis of commercialized biodiesel from vegetables oils of non-edible 

variety as well as from animal fats and which have been directly employed in motor vehicles as whole (100% 

Biodiesel) or blends [10-14]. Biodiesel (BD) is produced by the transesterification of fatty oils with lower chain 

alcohols like methanol or ethanol [15-16]. During biodiesel production process, 10% w/w of glycerol is generated as 

an undesired by-product [17-23], which interpreted that about 2300 million liters glycerol produced in upcoming year 

2025. Subsequently, the expanding worldwide interest for BD has come about in oversupplied glycerol, which has 

bad impacts on biodiesel industry. Pure glycerol could be a most precious chemical with thousand of opportunities for 

brand latest industrial application [24]. Glycerol has various applications in many fields like pharmaceutical, 

cosmeceuticals, food industries and used in cough syrups, toothpaste, allergen immune-therapies, mouthwashes, skin 

or hair care products, toiletries and glycerin soaps. Glycerol has also several medical applications; pure glycerol is 

used for treatment of bedsores, cuts, bites, rashes, burns and Nitroglycerin is used for treatment of cardiovascular 

disease [25, 26]. As a result the proper utilization of crude glycerol produced in biodiesel industries is most essential 

and now a-days researchers are focusing on value addition of glycerol [27]. Recently many researchers have explored 

several modern chemical pathways to maintain the sustainability in Glycerol and BD industry for the efficient 

modification of glycerol to fascinating chemicals. GLC (4-hdroxymethyl-1, 3-dioxolan-2-one / Glycerol carbonate) is 

a most valuable and important compound of glycerol [28] that draws in noteworthy logical and mechanical 
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enthusiasm because of its low poisonousness, low combustibility, biodegradability, good flammability and also good 

water solubility. Highly flammable and halogenated solvents like ethoxyethane were limited utilized in synthesis of 

GLC. There is still requirement to replace non-protic and polar solvents like N-methyl-pyrrolidine-2-one and N, N-

dimethylformamide with more acceptable alternatives [29]. During this context, glycerol transformation into high 

worth included synthetics is incredibly important. GLC being one of the interesting fine chemicals derived from 

glycerol and utilized in various industries is represented in Figure 1. It is widely used in gas separation membranes, 

coating and painting, detergents, synthesis of polymers like polycarbonates, polyamides, polyurethanes and 

polyesters, lubricating oils, surfactant, adhesive, elastomer, as high boiling polar solvents, electrolyte component and 

it is also utilized in plastics, cosmetics textile, pharmaceutical industries[26]. 

 
Figure 1 Applications of Glycerol Carbonate [26] 

The present review focused on synthesis of GLC from Glycerol and Dimethyl carbonate by utilizing various 

homogeneous and heterogeneous catalysts and the impact of various reaction boundaries, for example, catalyst 

stacking, molar proportion of DMC/glycerol, temperature and reaction time was investigated for optimized reaction 

condition. 

Materials and Methods 

Glycerol and DMC plays major role in the synthesis of GLC by transesterification reaction in presence of metal doped 

base catalysts. Conventional wetness impregnation technique was followed to prepare different metal doped base 

catalysts. Transesterification reaction was carried out in a 100ml round bottom flask connected to a reflux condenser. 

The reaction was carried out taking different stoichiometric proportion of Glycerol and dimethyl carbonate using 

different weight percentage loading of catalyst (based on glycerol used in the reaction mixture). The reaction mixture 

was stirred in a magnetic stirrer vigorously at 500rpm at 90 
0
C temperature for 1.5 hr. Then the product mixture was 

centrifuged to separate out the desired reaction product and the catalyst used in the reaction. The used catalyst was 

washed three to four times with methanol for reutilization in the transesterification reaction.  

Synthetic pathway of glycerol carbonate 

GLC could be obtained by several methods including: addition of CO2 to glycerol [30, 31], addition of glycerol to CO 

[32] and glycerolysis of urea [33]. However, GLC basically synthesized via direct synthetic route and indirect 

synthetic route. The synthetic route involves carbon monoxide and carbon dioxide, mightily attractive because it 

would be a way to eliminate the noxious greenhouse emission [34]. But, this route is not thermodynamically favored 

and vitality concentrated. There are also other indirect route which, includes the glycerolysis with urea, phosgenation 

and transesterification with carbonates such as dialkyl and alkyl carbonates (Figure 2). The indirect pathway having 

several features sort of a facile, minimal energy necessity for synthesis of GLC and also it is non-thermodynamic 

limited pathway [34, 35, 36]. GLC could be synthesized via dialkylene carbonates and alkylene carbonates function 
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of carbonate resources, is a noticeable offer for GLC synthesis. They are an attractive choice as compared to toxic 

phosgene and glycerolysis of urea because this reaction required vaccum (40–50 mbar) [37] to remove continuously 

ammonia from gaseous phase to proceed reaction. Dimethyl carbonate (DMC) is widely adopted for GLC synthesis, 

because it is cheap and exhibit low toxicity, higher efficiency at mild reaction phases which esteem higher yield GLC 

from substantial glycerol [38-44].The transesterification reaction of glycerol with dimethyl carbonate generates one 

particle of glycerol carbonate and two particles of methanol, where the equivalent dimethyl carbonate can be 

delivered from carbon dioxide and methanol [45]. The reaction of transesterification is considered as equilibrium 

reversible reaction. Hence, continuous removal of methanol as well as excess DMC is required, to obtain the 

sublimate GLC yield [46, 47]. Furthermore, with using ethylene and propylene carbonates are overcomes steps 

encountered in purification and separation using DMC. Thermodynamic stability and thickness of glycerol is 

significant factors, which require generally vitality concentrated conditions to accomplish the cleavages and initiation 

of reaction [34]. Thus, catalysts plays vital role to proliferate the transesterification reaction at mild reaction 

conditions. 

Researchers have been explored and reported that GLC can be synthesized using heterogeneous, homogenous and 

also enzyme catalysts. They demonstrated that selectivity of glycerol carbonate synthesis largely depend on catalyst 

type and also on other reaction parameters tuning to avoid formation of undesired by product. Some researchers 

reported acetylation and carboxylation of biodiesel-based glycerol with dimethyl carbonate and acetic acid to 

synthesize GLC and acetyl esters of glycerol. They also investigated optimization of reaction conditions, catalyst 

activity or deactivation and kinetics of reaction for effective synthesis of GLC [34, 35]. The transesterification 

reaction of glycerol with DMC is thermodynamically compatible and can be employed to prepare GLC. In this paper 

comparative analysis of different catalysts used for GLC synthesis by transesterification reaction of glycerol with 

DMC is extensively discussed. 

Result and Discussion 

GLC synthesis by transesterification reaction using glycerol with DMC, mostly depends on optimal reaction 

conditions and alkaline catalysts [48-50] Thus, the higher yield of GLC successfully obtained by application of 

several kind of catalysts to sustain the reaction [34, 51, 52]. Heterogeneous catalysts are considered as best catalyst 

over traditional homogeneous alkaline catalysts due to its easy separation, reusability and less corrosive nature. 

Homogenous catalysts such as KOH, K2CO3, NaOH successfully accustomed synthesize GLC via transesterification 

reaction using glycerol with DMC [53] but homogenous catalysts are environmental hazardous.  

Enzymes as catalyst 

Enzymes were employed to reduce the employment of hazardous catalyst which posed by homogenous catalysts and 

improve the green production of GLC synthesize using DMC with glycerol [54]. Enzymes required prolonged 

reaction time about 6- 48 hrs with less yield of GLC about 36% [34]. Some enzymes are still expensive and required 

higher glycerol /DMC molar ratio yet as lower reaction temperature (<60 
o
C) [55, 56]. To overcome fast enzyme 

deactivation and diminish their price, enzymes bonded on magnetic nanoparticle have been used. Tudorache et al. 

[56] revealed that a low stacking of lipase on magnetic nano particle increases the activity of enzyme catalyst due to 

uniform dispersion under mild reaction conditions which possess selectivity of GLC about 90% with glycerol 

conversion of 36%. Therefore, the lipase based on nano-magnetic catalyst could be undergo 15 times cycles of reuse 

without deactivation but still achieve lower yield of GLC relatively with reaction time about 6 hours. 

Du and co-workers [53] reported using lipase enzyme moored on magnetic silica nano-flowers comparably 

achieve a higher yield of GLC. They used surfactant and molecular sieve to extend miscibility and adsorb water 

respectively. Using surfactant and 0.2 g molecular sieve, conversion of glycerol is about 94.24% and GLC yield is 

88.66% at glycerol/DMC molar ratio of about 1:20 at 50 
o
C for 24 hours latent period and seven times reusability of 

catalyst. Hence, researchers have given more attention towards heterogeneous catalysts to avoid the drawbacks of 

enzymes and homogeneous catalysts. The catalytic activity of heterogeneous catalyst is comparably greater than 

homogeneous catalyst (GLC yield >90%) [57-60]. 

Alkaline Catalyst 

Transesterification reaction is mainly associated with proton abstraction to provide the reactive intermediate which is 

favoured by alkaline catalysts [45]. During the synthesis of GLC in presence of alkaline-base catalyst, cyclization 

reaction occurs with reactive intermediate and the carbonyl group of DMC. Basic catalysts achieved high conversion 

than the acidic catalysis during the transesterification reaction so base catalyst seems more promising than the acid 
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catalysis [61]. On comparing various basic solids like, MgO, BaO, SrCO3, these catalyst becomes more active 

because of having intrinsic basicity and MgO catalyst shows more activity which prepared by hydration followed by 

calcination billboard material [62]. 

 
Figure 2 Glycerol carbonates synthesis by various techniques using glycerol [26] 

The alkaline catalyst such as CaCO3, CaO are required to perform trasnsestrification reaction by using DMC but 

this catalyst shows less reactivity after use [63]. A number of other catalysts such as Mg/Al/Zr mixed oxides [64], KF 

modified hydroxyapatite [65] and triethylamine [66] or Lipases [67] even are used during the transesterification 

reaction. Homogeneous catalysts such as K2CO3, NaOH, H2SO4, KOH, p-toluenesulfonic acid, DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene), and DABCO (1,4-diazabicyclo [2.2.2] octane) were exhibited to be highly deedful 

for this transesterification [68-70]. These type catalysts having some practical problems during the reaction in terms 



Chemical Science Review and Letters  ISSN 2278-6783 

DOI:10.37273/chesci.CS205107179       Chem Sci Rev Lett 2020, 9 (36), 1003-1013       Article cs205107179      1007 

of reuses and cannot easily separate but they exhibit high catalytic activity. There is decomposition of GLC occurred 

due to existence of homogeneous catalysts during the distillation separation of GLC and glycerol [71]. Finally, 

catalysts based on calcium such as Mg1+xCa1−xO2 and CaO, CaCO3, CaO/Al2O3, or Ca(OCH3)2 employed as a brand 

new solid catalyst for GLC synthesis from DMC and glycerol by transesterification reaction that showed high 

catalytic activity. However, this calcium based catalysts easily separate, recovered and formed calcium-based 

homogenous highly active species during the transesterification reaction [53, 72-73]. They offered reasonably high 

selectivity for glycerol carbonate and high catalytic activity of glycerol conversion. Various inorganic or organic base 

catalysts like DBU, DABCO, ionic liquids, alkali metal, alkaline earth metals, mixed metals oxide, abundant 

materials or wastes like disposable diapers, dolomites, ash, eggshells, steel slags, fishmeal and gypsum are employed 

with considerable performance for GLC synthesis selectivity [44,74-77]. 

Ionic liquids (ILs) as catalyst 

Ionic liquids (ILs) have been utilized as catalysts during the synthesis of GLC. Ionic liquids are solvents, which 

absolutely contain ions that are fluid at ambient temperature [46, 78]. Particularly, basic ionic liquid contains amide, 

quaternary salts of imidazolium, ammonium similarly as quadine, which has been successfully employed in GLC 

production to catalyzing the transesterification reaction of glycerol with DMC [46, 79-80]. Ionic liquid shows several 

types of disadvantages such as separation after the completion of reaction, ion mobility, anion basicity and various 

types of undesired by products could be generated when they are employed in a reaction [81]. 

Layered double hydroxides (LDH) as catalyst 

GLC also successfully synthesized by using heterogeneous catalysts such as mixed metals oxides that are based on, 

magnesium, potassium hydrotalcite, sodium and calcium-based catalysts. Hydrotalcites are layered double hydroxide 

(LDH) compounds, with the general formula [M
2 +

1 ―x M
3 +

x (OH) 2]
x +

[A
p-

x/p ]
x+

.mH2O, where charge balancing anion 

represented by A
p 

and divalent and trivalent cations respectively represented by M
2+ 

and M
3+

[82]. Different mixed 

oxides are obtained from LDHs which could be easily recovered after rehydration. LDH have memory impact i.e., on 

thermal treatment over 400 
o
, it changes into separate blended oxides, that could be recouped after rehydration [83]. 

The blended oxides obtained from LDH decay have a generally high surface territory, which is thermally stable and 

solid Lewis base. Hence, it showed intermediate GLC yield and conversion of glycerol was successfully improved by 

using LDH decomposed mixed oxides as catalyst in GLC synthesis [84, 85]. There is limited interaction of primitive 

LDH or disintegrated blended oxides due to their low solubility. This restriction affects the utilization of harsh 

response conditions and larger reaction time of 4-54 h is required for completion of glycerol transformation even at 

temperature over 120 
o
C [86]. To stay away from brutal response conditions, solvents for example, DMF (N,N-

dimethyl formamide) have been utilized to accomplish a 75% GLC yield at mild reaction temperature of 100 
o
C in 1hr 

[87].  

The equivalently low synergist execution of unblemished or decayed LDH is notably attributed to low solubility 

and essential quality of magnesium. Basicity of LDH can be increased by the centralization of metal cations 

consolidated over LDH structures, for example copper [42], NaAlO2 [39], Mg/Al/Zr [88] and transition metals have 

been used to increase the hydrotalcites basicity to improve GLC yield [65]. Moreover, CaO and catalysts of mixed 

calcium are promising heterogeneous catalysts for the glycerol transesterification reaction with DMC to prepare GLC. 

The economical abundant nature of CaO and high basicity, makes it attractive catalyst for transesterification reaction 

of glycerol with DMC [80]. 

Appreciable GLC yield of >90% obtained from calcined calcium oxide over 900 
o
C when DMC is utilized in 

overabundance of equal stoichiometric ratio [89]. However, calcined CaO is much unstable in glycerol and highly 

strong to deactivate by atmospheric CO2. Thus, catalytic activity of CaO drastically diminished during the recycling 

performance by CaO [53, 89, 90]. Some metals, for example- lanthanum (La), potassium (K), sodium (Na) and 

magnesium (Mg) have been utilized to stabilize CaO [72, 91, 92]. These metals exhibit synergistic and dispersion 

effect on CaO and increases its basicity as well as stability. Above study also concluded that use of alkaline and alkali 

earth metals stabilized CaO and the reusability of catalyst increases to more than four cycles. Therefore, intense 

exhausting chemical substances are fully substituted by abundant materials or wastes with requisite elemental 

compositions to achieve sustainability of GLC synthesis.  

Wastes as catalyst 

Algoufi and co-workers achieved improved GLC yield of above 95% by using calcined dolomite and K-zeolites, a 

reusable catalyst originated from waste coal fly ash [93, 94]. Our research group at IIT BHU, used active metal doped 
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pond ash catalyst for GLC synthesis. Biochar of agricultural waste has been used as potential catalysts for 

transesterification reaction of glycerol due to high surface area, low-cost and inflexible textural characteristics. About 

99% of GLC yield was obtained using fishery waste with glycerol/DMC molar ratios of 2 at 85 
o
C for 90 min reaction 

time [95]. The fishery waste contains an admirable quantity of phosphorus, calcium, potassium, sodium, carbon, 

nitrogen and oxygen. Basicity of biochar and pore characteristics was enhanced by pyrolysis at a temperature of 500-

700 
o
C, hence the reusability of biochar catalyst increases and after fifth time of reuse yield of GLC is 93% [96]. 

Okoye et al. [97] investigated the new pathways for GLC synthesis using ash of empty fruit from palm which shows 

the improved effect due to calcination. They revealed that by increasing temperature of calcination from 300 
o
C to 

600 
o
C, the crystalline phase of ash was modified from KAlSiO4 to K2Mg (SiO4) and basicity increases, which 

showed improved GLC yield of more than 95% with 3 molar ratios of DMC/glycerol at 90 
o
C in reaction time of 45 

min. The stable calcined ash could be reused for four times without rapid deactivation. Similarly high surface area 

lithium doped zeolite was produced from palm oil ash and used as a catalyst for transformation of glycerol to value 

added GLC [98]. Lithium doping enhanced the surface basicity and 100% glycerol conversion was occurred with 

98% GLC yield at DMC/glycerol molar proportion of 2, temperature of 70 
o
C and reaction time of 90 min. After 

doping with Li, the crystallinity of zeolite framework remains preserved and the catalyst can be reused for five times 

without immense deactivation [45]. The activity of different catalysts, optimization reaction condition and GLC yield 

was compiled in Table 1. 

Table 1 Correlation of reaction conditions and execution of heterogeneous base catalysts in glycerol 

transesterification [26] 

Catalysts Solvent Reaction conditions Performance
b
 

M.R C.L 
a 

(wt or mol %) 

Temp 

(
o
C) 

R.T(h) Y/C/S (%) 

CaCO3 
d
 – 5:1 (DMC) 10 mol% 75 1.5 Y=90.6 

CaO 
d
 – 5:1 (DMC) 6wt% 75 1.5 Y=91.1 

CaO 
d
 – 2:1 (DMC) 3mol% 75 0.5 Y=94 

CaO – 2:1 (DMC) 3mol% 75 0.5 Y=90.2 

CaO – 1:1 (DMC) 3mol% 60 2 Y=69 

CaO – 2:1 (EC) 0.5wt% 35 1 Y=83 

CaO – 2:1 (EC) 0.5wt% 35 0.25 Y=81 

Calcium complex Ca(C3H7O3)2 DMF 5:1 (DMC) 8 mol% 60 3 Y=95 

MgO
 d
 – 2:1 (DMC) 3mol% 75 3 Y=10.2 

ZnO – 2:1 (DMC) 3mol% 75 0.5 Y=0.5 

Na2O – 2:1 (DMC) 3mol% 75 0.5 Y=92.6 

MgO – 2:1 (EC) 7wt% 50 5 Y=78 

Al/Mg hydrotalcite
 d
 – 2:1 (EC) 7wt% 50 5 Y=82 

Al/Mg hydrotalcite
 d 

(rehydrated) – 2:1 (EC) 7wt% 50 5 Y=68 

Al/Ca hydrotalcite
 d
 – 2:1 (EC) 0.5wt% 35 1 Y=87 

Mg1 + xCa1 _ xO2 mixed oxides – 2:1 (DMC) 3wt% 70 1.5 Y=100 

Mg/Al/Zr mixed oxides – 5:1 (DMC) 0.1wt% 75 1.5 Y=94 

Mg/Al hydrotalcite DMF 5:1 (DMC) 54wt% 100 3 Y=82 

Mg/Al hydrotalcite (rehydrated) – 17:1(DEC) 16wt% 130 10 Y=65 

Zeolite (NaY)
 d
 Methanol 3:1 (DMC) 10wt% 70 4 Y=80 

KF/hydroxyapatite – 2:1 (DMC) 3wt% 78 0.83 Y=99 

NaOH/c-Al2O3 – 2:1 (DMC) 3wt% 78 1 Y=97h 
DEC = Diethyl carbonate, DMC = Dimethyl carbonate, EC = Ethylene carbonate 

M.R= molar ratio, TEMP= temperature, R.T=reaction time, C.L= catalysts loading 

Y = yield of glycerol carbonate, S = selectivity of glycerol carbonate, C = transformation of glycerol.  
a
(Amount of catalyst/ measure of glycerol)×100%. 

b
Y = (production of glycerol carbonate (g) / initial amount of glycerol (g)) ×100%, 

 C = (initial glycerol – residual glycerol) / glycerol initial × 100%, S = Y/C 
d
catalyst calcination for 3 h to overnight at 450

o
C ≤ T≤ 6 900

o
C. 

From the comparative analysis it was found that heterogeneous mixed metal oxide (Mg1 + xCa1 _ xO2) catalyst 

showed high performance compared to other catalysts. Utilization of heterogeneous catalyst in transesterification 

reactions has been obliged by the reaction affecting boundaries as well as performance and stability. Optimization of 

parameters such as reaction temperature, response time, DMC to glycerol molar ratio and catalyst dose is critical for 
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acquiring high GLC yield. Among these parameters, particularly the reaction temperature as well as catalyst solidness 

is a significant element to study before commercialization of the GLC synthesis route. 

Conclusion 

Glycerol carbonate is a valuable and important derivative of glycerol and is a green chemical. It has various industrial 

as well as other applications like accessory in manufacturing of polymeric materials such as polycarbonates, 

polyglycerol esters as well as polyurethanes, as intermediate in cosmetics or chemical synthesis, pharmaceuticals, 

detergents etc. The subsequent routes are analyzed to synthesize glycerol carbonate by various chemicals such as (a) 

reaction of glycerol with DMC or ethylene carbonate via transesterification; (b) reaction of glycerol with urea via 

carbonation or carbamoylation process; (c) reaction of CO2 with 3-chloro-1,2- propanediol. As a consequence, these 

alternative routes have been selected for glycerol carbonate synthesis. Maximum yield of GLC can be obtained using 

different form of catalysts including hydrotalcites, lipase, ionic liquids and pure or mixed metal oxides via 

hydrotalcites and doped metal oxides during transesterification of glycerol. It is worth noting that production of GLC 

is closely passionate about the sort of catalyst applied in transesterification reaction.  

Basic heterogeneous catalyst with proper basicity and fundamental quality can improve the GLC synthesis by 

transesterification reaction using glycerol and DMC. Hence, response temperature, catalyst stacking, DMC/glycerol 

molar proportion and response time influences the rate of GLC transformation. Subsequently, proper decision of these 

factors and tuning the response affecting variables will improve the GLC yield. Industrial manufacturing of GLC via 

transesterification reaction treated with ethylene carbonate or DMC with glycerol in presence of heterogeneous 

catalyst looked as if it would be the valuable and foremost convenient pathway due to their high activities, recycled 

abilities and easy recovery methods. Hence transformation of biodiesel waste, glycerol into valuable and fascinating 

chemical Glycerol carbonate will economize the biodiesel production process.  
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