
Chemical Science Review and Letters  ISSN 2278-6783 

DOI:10.37273/chesci.cs172050121            Chem Sci Rev Lett 2020, 9 (33), 77-86              Article cs172050121 77 

Research Article 

Spatial variability of Soil Macronutrients on Basaltic landscape of Central 

India: A Geostatistical approach 

Nisha Sahu*, G.P. Obi reddy, Nirmal Kumar, M.S.S. Nagaraju, Rajeev Srivastava and S.K. Singh 

ICAR-National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur-440 033, India  

Introduction 

Soil is a dynamic natural body, which is characterize by high degree of spatial variability due to combined effect of 

physical, chemical or biological processes that operate with different intensities at different scales [1]. Reports have 

shown that there is large variability in soil properties, crop yield, disease, weed etc., not only in large-sized fields [2], 

[3], but also in small-sized fields [4]. Soil macronutrients are essential to plants growth; maintain ecosystem and high 

crop yields. However, imbalance fertilization, deteriorate the precious soil environment particularly N and P can be 

potentially hazardous to water resources when their available components in soils are excessive, because available 

macronutrients can be transported off site in runoff due to rain or irrigation [5-7] and subsequently degrades the 

fertility of soil and reduced the productivity. Several studies have documented that soil properties vary across 

agricultural fields, causing spatial variability in crop yields. Information on soil properties in crop field is 

very important and useful for fertilizer requirement and to the specific management of the crop and soil. 

Understanding the distribution of soil properties in the field is important in refining agricultural management practices 

[8] while minimizing environmental damage. Soil variability can be due to many processes acting and interacting 

across a continuum of spatial and temporal scales and is inherently scale dependent [9]. Knowledge of soil spatial 

variability and the relationships among soil properties is important for evaluating agricultural land management 

practices [10]. Among statistical methods, geo-statistical kriging-based techniques have been often used for spatial 

analysis [11]. Spatial interpolation is therefore, commonly used to generate soil property maps from discrete point-

based data [12]. [13] tested the performance of spatial interpolation techniques (normal kriging and log normal 

kriging) for mapping soil properties and obtained acceptable results. 

In recent years, geostatistics has been proven to effectively assess the variability of soil properties [14-20]. A 

semivariogram is use to describe the structure of spatial variability and plays a central role in the analysis of 

geostatistical data using the kriging method. It takes into account the spatial autocorrelation in data to create 

mathematical models of spatial correlation structures commonly expressed by variograms [21, 22]. The spatial 

distribution patterns of soil properties vary greatly depending on soil types, topography, climate, vegetation and 

anthropogenic activities. Soil mapping is a process in which the spatial variance of topsoil properties are estimated 

and exposed in a way that can be understood and analyzed by a wide range of users [23, 24]. A standard method for 
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generating these maps is to sample the area of interest using a grid sampling design and then interpolate the measured 

variable values of the samples using one of the existing interpolation methods. The spatial interpolation methods 

make available a tool for estimating the values of soil variable at unsampled points using data from point observations 

[25, 26]. Data measurement accuracy, data density, data distribution and spatial variability are the factors having the 

greatest influence on interpolation accuracy [27]. The performance of an interpolation method is usually assess and 

compared using cross validation. The ultimate goal of cross validation is to increase credibility and gain sufficient 

confidence about an interpolation method, and to ensure that predictions reflect the most likely true outcome, 

particularly real spatial variability. The performance of interpolation techniques is evaluated using validation indices. 

A few validation indices include cross validation [28], mean prediction error [29, 30], mean absolute error, [31] mean 

squared prediction error, [12, 32], and root-mean-squared prediction error [29, 33]. Many studies recognized the 

importance of spatial structure in the interpolation [34, 35]. Nugget over sill ratio (N/S), which defines the proportion 

of short-range variability that cannot be described by a geostatistical model based on a variogram, has been used to 

quantify the strength of spatial structure. [36] used kriging method to estimate heavy metals and found that the used 

method is the best estimator for spatial prediction of metals. In another research, spatial distribution maps were 

constructed for EC and pH of soil extracts using ordinary kriging interpolation in the agricultural lands of Rhodope 

District, Northeastern Greece [37]. 

In the last two decades, the application of geo-statistical methods by soil scientists focused on predicting spatial 

variability of soil properties with different kriging methods over small to large spatial scale [38, 39]. Traditional 

mapping method of soil parameters is of little help when the uncertainty associated to the estimated values at 

unsampled locations is required to support decision making. The geo-statistical methods consider the spatio-temporal 

variation of soil properties as a random process depending on both time and space [40]. Kriging is a geo-statistical 

interpolation technique that uses statistical properties of measured points for interpolation at unsampled locations [41] 

and performance can be significantly affected by variability, spatial structure of data [34] and by the choice of 

variogram models.  

Geographic information systems (GIS), as new technology, for improving sampling design by utilizing the spatial 

dependence of soil properties within a sampling region and useful to illustrate the spatial interrelationship of soil data, 

which reduces error, biasness and increase the accuracy of data for interpolation [42]. Characterization of soil spatial 

variability would be a key step towards development of site specific technology that will help the farmers to select the 

most appropriate soil and water management practices to optimize crop production across the field [43]. The most 

important way to achieve the aforesaid target is to prepare soil maps through spatial interpolation of point-based 

measurements of soil properties after deriving the structure of spatial variation [44]. Therefore, their proper 

management is necessary to avoid deteriorating the environment while meeting the requirement of high crop 

productivity and farmer must be advised to use balanced fertilizers/manures, special soil amendment (if any) and 

accordingly adopt suitable cropping pattern. Hence, it is necessary to evaluate the fertility status of the soil and 

promote the recommendations of soil test for balanced nutrition to maintain soil health. The information on spatial 

variability of soil properties at village or watershed level, particularly, in soils of basaltic terrain is meager. Therefore, 

the present study aimed to assess the accuracy of geospatial techniques and to quantify the spatial variability of soil 

macronutrients in Miniwada Panchayat, Katol tehsil of Nagpur district of Maharashtra. 

Kriging is a widely used method of geostatistical interpolation that assumes that no regional trend 

exists in the data. This method utilized the co-regionalization structure of soil properties and provided 

unbiased estimates and minimum variance [45]. 

Materials and Methods 
Study area 

Miniwada Panchayat is situated in Katol tehsil of Nagpur district, Maharashtra and lies between 21
0
 08′ to 21

0
 12′ 

North latitudes and 79
0
 08′ to 79

0
 15′ East longitudes with an area of 1621 hectares (Figure 1). The panchayat 

includes three villages namely Miniwada, Mhasala and Malkapur, which. The elevation ranges from 407 to 472 m 

(WGS 84 datum) above mean sea level (MSL). The geology of the area is basalt. The climate is mainly hot sub-

tropical and general dryness throughout the year except during the south-west monsoon season. The mean annual 

temperature 28
o
C and mean annual rainfall of 980 mm, which is lower than the average rainfall of 1205 mm of 

Nagpur district. The area qualifies for hyperthermic soil temperature regime and Ustic soil moisture regime. 

Soil Sample Collection and Analysis 

Soil samples were collected grid wise at an interval of 250 m with the help of Global Positioning System (GPS). A 

total of 235 soil samples were collected from the plough layer (0-25 cm) covering the entire study area has shown in 
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Figure 2. Available nitrogen [46], available phosphorus [47] and available potassium [48] were determined by using 

standard procedures. 

 
Figure 1 Location map of the study area 

 
Figure 2 Distribution of sampling points in Miniwada Panchayat 
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Geostatistical analysis of Soil properties 

In general, geostatistical methods were used to estimate and map the soil properties. It is based on the theory of 

recognized variables, which was used to investigate the soil spatial variability. It is expressed by a Semivariogram, 

which measures the average dissimilarity between data separated by a vector h it is computed as half the average 

squared difference between the components of data pairs: 

      (1) 

Where, N(h) is the number of data pairs within a given class of distance and direction, z(xi) is the value of the variable 

at the location xi and z(xi+h)is the value of the variable at a lag of h from the location xi. 

Experimental semivariogram value for each property was computed using ArcGIS 10.2.2. During pair calculation, 

maximum lag distance was taken half of the minimum extent of sampling area to minimize the border effect. Using 

the semivariogram model, basic spatial parameters such as nugget (C0), partial sill (C+ C0) and range (m) was 

calculated. Nugget is the variance at zero distance, partial sill is the lag distance between measurements at which one 

value for a variable does not influence neighboring values and range is the distance at which values of one variable 

become spatially independent of another [49]. Three commonly used semivariogram models were fitted for soil 

macronutrients (N, P and K). These are the Spherical, Exponential and Gaussian model. Expressions for different 

semivariogram models are below: 

Spherical model 

 - 0.5( )
3
],  if 0 ≤ h ≤ a,   (2) 

= , otherwise 

Exponential model 

  for h ≥ 0    (3) 

Gaussian model 

  for h ≥ 0   (4) 

In all these models, nugget, sill and range were expressed by Co, (C+ Co) and m, respectively. From spatial data 

on soil properties corresponding point feature file was prepared in ArcGIS. ArcGIS geo-statistical analyst extension 

was used to carry out exploratory variogram analysis and then extend this exploratory approach to spatial 

interpolation by way of kriging. Geo-statistical analysis consisting of variogram calculation, kriging, cross-validation 

and mapping was performed using the geo-statistical analyst extension of ArcGIS 10.2.2. 

Sensitivity analysis 

Accuracy of model was done by comparing the deviation of estimates from the measured data and performing a cross-

validation test over the dataset. The best model was selected based on four criteria: the standardized mean nearest to 

zero, the smallest Root-Mean-Squared prediction Error (RMSE), the average standard error nearest the root-mean-

squared prediction error and the standardized root-mean-squared prediction error nearest one were selected for each 

soil nutrient. The performance of interpolation techniques, in terms of the accuracy of predictions, was based on the 

comparison of the measure of accuracy, namely the Mean-Squared Error (MSE) and on one measure of effectiveness, 

namely the Goodness of Prediction Estimate (G). The G gives an indication of how effective a prediction might be. 

The expressions for Mean Absolute Error (MAE), Mean Square Error (MSE) and Goodness of prediction (G) are 

given below: 

MAE is a measure of the sum of the residuals (e.g. predicted minus observed) [32]. 

    (5) 
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Where,  is the predicted value at location. Small MAE values indicate few errors. The MAE measure, however, 

does not reveal the magnitude of error that might occur at any point and hence MSE was calculated. 

    (6) 

Squaring the difference at any point gives an indication of the magnitude, e.g. small MSE values indicate more 

accurate estimation, point-by-point. The G measure gives an indication of how effective a prediction might be relative 

to that which could have been derived from using the sample mean alone [12]. 

x 100    (7) 

Where, M is the sample mean. If G= 100, it indicates perfect prediction, while negative values indicate that the 

predictions are less reliable than using sample mean as the predictors. The comparison of performance between 

interpolations was achieved by using mean absolute error (MAE). 

The spatial dependency of soil properties was graded based on the nugget variance effect. The ratio of nugget 

variance to sill expressed in percentages (C0 / C+ C0) can be regarded as criterion for classifying the spatial 

dependence of the soil parameters. If the ratio is equal or less than 25%, then the variable has strong spatial 

dependence, if it is between 25 and 75% considered as moderate spatial dependence, and the values equal or greater 

than 75% have weak spatial dependence [24]. 

Data Analysis 

Statistical results indicated that the soil macronutrients were normally distributed. Data sets were analyzed and maps 

were produced with GIS software ArcGIS and its extension of Spatial Analyst.  

Results and Discussion 
Descriptive Statistics of Soil Parameters 

The descriptive statistics of soil parameters are shown in Table 1 which suggested that they were all normally 

distributed. The available N, P and K varied from 112.69 to 275.94 kg/ha, 2.1 to 19 kg/ha and 91 to 241 kg/ha, 

respectively. The greatest and the smallest standard deviation were observed in the available potassium (33.38) and 

available phosphorus (2.77), respectively. Skewness is the most common form of departure from normality. If a 

variable has positive skewness, the confidence limits on the variogram are wider than they would otherwise be and 

consequently, the variances are less reliable. Alogarithmic transformation is considered where the coefficient of 

skewness is greater than one [17].  

Table 1 Descriptive statistics of soil parameters (0-25 cm) depth of 235 soil samples 

Parameters Distribution Minimum Maximum Mean Median Std. dev. Skewness Kurtosis 

Avail. N (kg/ha) Normal 112.69 275.94 182.18 183.27 31.82 -0.019 3.00 

Avail. P2O5 (kg/ha) Normal 2.1 19 9.36 9.2 2.77 0.544 3.85 

Avail. K2O (kg/ha) Normal 91 241 156.79 154 33.38 0.164 2.37 

Semivariogram of Soil Properties 

In order to identify the possible spatial structure of different soil properties, semivariograms were calculated and the 

best models that describe these spatial structures were identified (Figures 3 and 4). Root mean square error (RMSE), 

Root mean square standardized prediction error (RMSSE) and Mean standardized error (MSE) for different 

theoretical semivariogram models to fit the experimental semivariogram values for each soil property are given in 

Table 2. The performance of three models (Spherical, Exponential and Gaussian) has been compared. According to 

the cross-validation parameters, generally all three models performed fairly well but Spherical was the best model. 

Among different theoretical models tested, the Spherical model was found as the best fit in case of available N and 

available K whereas Gaussian model was the best for available P, because it had the highest precision and lowest 

error for estimation of these nutrients. 
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(a) 

 
(b) 

 
(c) 

Figure 3 Semivariogram of soil macronutrients (a) Available N; (b) Available P and (c) Available K 

Semivariogram parameters (range, nugget and partial sill) for each soil macronutrient with the best-fitted model 

are presented in Table 3. The range expressed as distance could be interpreted as the diameter of the zone of 

influence that represented the average maximum distance over which a soil property of two samples was related. At 

distances less than the range, measured properties of two samples became similar with decreasing distance between 

the two points. Thus, the range provided an estimate of areas of similarity. Nugget (Co) defines the micro-scale 

variability and measurement error for the respective soil property, whereas partial sill (C) indicates the amount of 

variation, which can be defined by spatial correlation structure. The interpolation maps of all ordinary kriging soil 

macronutrients are shown in Figure 5. According to the classification of [24] nugget to sill ratio for available N is 

strong whereas for available P and K had a moderate spatial dependency. 

Ordinary Kriging and Cross Validation 

Spatial maps prepared through ordinary kriging using the semivariogram parameters were cross-validated by leaving 

one sample out and predicting for that sample location based on rest of the samples. Evaluation indices resulting from 

cross-validation of spatial maps of soil properties are given in Table 4. For all soil parameters the G value was greater 

than zero, it indicates that spatial prediction using semivariogram parameters is better than assuming mean of 

observed value as the property value for any unsampled location. This also shows that semivariogram parameters 

obtained from fitting of experimental semivariogram values were fairly reasonable to describe the spatial variation. 
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(a) 

 
(b) 

 
(c) 

Figure 4 Cross validtion and QQ plot of soil macronutrients (a) Available N; (b) Available P and (c) Available K 

Table 2 Parameters for different theoretical semivariogram models used to fit the experimental semivariogram of soil 

properties 

Soil properties Semivariogram model RMSE
a 

RMSSE
b 

MSE
c 

Avail. N Spherical 

Exponential 

Gaussian 

29.814 

30.176 

29.892 

1.046 

1.047 

1.062 

0.003 

0.004 

0.006 

Avail. P2O5 

 

Spherical 

Exponential 

Gaussian 

2.557 

2.550 

2.539 

0.967 

0.962 

0.959 

-0.001 

-0.0007 

-0.002 

Avail. K2O 

 

Spherical 

Exponential 

Gaussian 

30.151 

30.214 

30.231 

0.963 

0.961 

0.967 

-0.009 

-0.012 

-0.008 
a
Root Mean Square prediction Error; 

b
Root Mean Square Standardized Error; 

c
Mean Standardized Error 
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Table 3 Semivariogram parameters (ordinary kriging interpolation) of soil properties 

Soil 

properties 

Semivariogram 

model 

Range 

(m) 

Nugget 

(Co) 

Partial 

Sill (C) 

Co+C NS 

ratio 

Spatial 

dependence 

Avail. N Spherical 462.78 0.06 983.99 984.05 -0.00 Strong 

Avail. P2O5 Gaussian 522.81 4.44 3.520 7.957 -0.56 Moderate 

Avail. K2O Spherical 513.34 353.66 749.912 1103.573 -0.32 Moderate 

 
(a)             (b) 

 
(c) 

Figure 5 Kriged map of soil macronutrients (a) Available N; (b) Available P and (c) Available K 

Table 4 Evaluation performance of Ordinary kriged map of soil properties through cross-validation 

Soil  

properties 

Mean Absolute  

Error (MAE) 

Mean Square  

Error (MSE) 

Goodness of  

Prediction (G) 

Avail. N 0.125 888.85 11.8 

Avail. P2O5 -0.010 6.446 15.60 

Avail. K2O -0.426 909.08 18.07 

Conclusions 

The generation of soil properties maps by kriging technique depicts their spatial variability and provides a strong base 

for site-specific nutrient management to optimize crop production and input use efficiency. Spatial variability of soil 

fertility was quantified through semivariogram analysis and interpolated through ordinary kriging using the best fit 

model. Results of the study indicate that geostatistical techniques are more suitable methods for estimation of soil 

properties than other interpolation methods. Spherical model was found best fit for available N and K, whereas 

Gaussian model was found best fit for available P. Available N was strongly spatially dependent, whereas, Available 

P and K were moderately dependent. Cross-validation of kriged map shows that spatial prediction of basic soil 

properties using semivariogram parameters is better than assuming mean of the observed value for any unsampled 

location. The value of MAE and G for kriging as derived from geo-statistical analysis suggests that kriging technique 

may successfully be used for prediction and mapping the spatial distribution of soil parameters in the study area.  
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