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Introduction 

Okra (Abelmoschus esculentus) belongs to family Malvaceae and is an important vegetable crop grown throughout 

the year. Besides India, it is grown in many tropical and subtropical parts of the world. Due to their tender and supple 

nature and their cultivation under high moisture & input regimes, okra is more prone to insect pest attack. The crop is 

attacked by number of pests of which cotton mealybug causes serious substantial reduction in crop growth and yield. 

It has been described as a serious and invasive polyphagous pest with a vast host range. It causes significant economic 

damage on cotton, brinjal, okra, tomato, sesame, sunflower and China rose [1-3]. The sucking of sap by the pest 

results in the yellowing of leaves which lead to loss of plant vigour, foliage and fruit drop [4, 5]. 

Temperature is one of the major environmental factors influencing insects. Development, survival, adult 

longevity and fecundity data are vital for understanding the population dynamics of any insect species on a particular 

host [6]. Understanding phenology of an insect species at different temperatures is crucial for predicting its seasonal 

occurrence and planning for integrated management. Many mathematical models describe insect developmental rate 

as a function of temperature [7-10]. Linear model [11] is widely used to explain the straight line relationship between 

the developmental rate and temperature in the limited range and calculate lower developmental thresholds and 

thermal constants required to complete development of life stages. Keeping this in view, the present studies were 

undertaken. 

Experimental 

Nymphs and adults of the cotton mealybug were collected from the experimental field of Faculty of Agricultural 

Sciences, Aligarh Muslim University, Aligarh and were mass reared on okra cuttings (tender shoots and leaves) in 

laboratory at 27 ± 1 °C and 70-80% relative humidity. The cuttings were replaced every three days by new ones and 

the mealybug population was transferred to the new cuttings using a camel hair brush. From this stock culture, further 

experiment was conducted. 15 gravid females were collected from the laboratory culture and kept on okra shoots in 

petriplates provided with filter paper. Moist absorbent cotton was put under filter paper to maintain the humidity and 

fresh shoots of okra were provided as food daily and incubated until oviposition. Eggs laid on the same day were 

placed in small vials and put in incubators at 15 ± 1, 18 ± 1, 21 ± 1, 24 ± 1, 27 ± 1, 30 ± 1 and 33 ± 1 °C with 65-70% 

relative humidity. The mealybug cohorts were examined daily and development was recorded. 

Development rate (R) for egg, nymphal stages and prepupal and pupal stages of male of cotton mealybug was 

computed as reciprocal of the mean number of days to complete development. Development threshold (To) and 

thermal constant (K) were then determined by regressing development rate on temperature [12] according to the rule 

of the constant sum of effective temperature as under: 
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Thermal constant = (Temperature – development threshold) X development duration 

The K was estimated as reciprocal of regression coefficient (b) between development rate and temperature. 

K = 1/b 

To was determined by the ratio of regression intercept (a) and (b) 

To = - a/b 

Result and Discussion 

The present study revealed that the development duration of P. solenopsis decreased with increase in temperature 

from 15 ± 1 to 33 ± 1 °C (Table 1). The temperature increase from 15 ± 1 to 33 ± 1 °C reduced the incubation period 

from 5.15 to 1.15 days, 1
st
 instar nymphal period from 22.3 to 2.4 days, 2

nd
 instar nymphal period from 7.3 to 2.0, 3

rd
 

instar female from 6.85 to 2.2, and male (pre-pupal and pupal) period from 13.45 to 4.25days, respectively. The total 

life cycle duration of P. solenopsis was also observed at each temperature and it decreased from 48.2 to 9.8 days for 

males and 41.6 to 7.7 days for females with temperature increase. The total development period in male and female 

differedand was noted to be dependent upon variations in temperature. Interestingly at lower temperatures (upto 

21 °C) the duration was greater (6.6, 6.5, 5.0 days) than at higher temperature upto 33 °C where the difference was of 

only 2.1 days. 

Table 1 Determination of threshold temperatures and thermal constant for different developmental stages of cotton 

mealybug, P. solenopsis 

P. solenopsis  

development stages 

Regression  

equation 

Thermal  

constant (K) 

Temperature  

threshold (To) 

R
2
 

Egg y =0.041x - 0.521 24.40 12.70 0.92 

1
st
 instar y = 0.019x - 0.301 52.63 15.80 0.88 

2
nd

 instar y = 0.017x - 0.154 58.82 9.05 0.84 

3
rd

 instar (Female) y = 0.016x - 0.142 62.50 8.87 0.91 

Male (Pre-pupal and pupal stage y = 0.007x - 0.054 142.85 7.71 0.96 

Regression equations between development rate and temperature were found to be y=0.041x - 0.521 (R
2
 = 0.92) 

for egg; y = 0.019x - 0.301 (R
2
 = 0.88) for 1

st
 instar nymph; y = 0.017x - 0.154 (R

2
 = 0.84) for 2

nd
 instar nymph; y = 

0.016x - 0.142 (R
2
 = 0.91) for 3

rd
 instar female nymph y = 0.007x - 0.054(R

2
= 0.96) for male pre-pupal and pupal 

stage, respectively (Figures 1-3). Development threshold was determined to be 12.70, 15.80, 9.05, 8.87 and 7.10 °C 

for egg, nymphs (I to III instar) and male pre-pupal and pupal stage, respectively with corresponding thermal constant 

being 24.40, 52.63, 58.82, 62.5 and 142.85 DD. Total thermal constant requirement to complete a generation was thus 

341.2 DD. It may also be noted that temperature threshold decreased after 1
st
 instar stage. 

 
Figure 1 Regression between different temperatures and mean duration of P.solenopsis (I instar nymphs, female) 
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Figure 2 Regression between different temperatures and mean duration of P.solenopsis (male pre-pupal stage) 

 
Figure 3 Regression between different temperatures and mean duration of P.solenopsis (pupal stage of male) 

Conclusion 

A linear approximation of relationship between developmental rate and temperature gives the most appropriate fit 

within the quasi-linear range of temperatures [13]. Entomologists have strong interest on this kind of relationships, 

since they are prerequisite to predicting timing and phenology of insect life cycle events and to initiating management 

actions [14, 15], while application of temperature driven models are also essential in epidemiology modeling, 

development of effective vector control programmes [16] and prediction of biological invasions [17]. From an 

agronomical standpoint, empirical models are often used to predict specific population events and provide means for 

precisely applied control methods, reducing costs as well as insecticide use [18, 19]. Furthermore, the determination 

of insect-specific vital thermal requirements provides evidence to infer on observed geographical distributions and 

predict future dynamics [20]. 
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