Research Article

Effect of Supplementation of Aloe Vera on Growth Performance in Broilers Chicks

Hitesh Singh*, Nazim Ali, Jagdeep Kumar, Raj kumar, Satyaveer Singh and Ankit kansal

Department of Animal Husbandry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut-250110, (U.P.)

Abstract

The 120 one-day-old male broiler chicks (Cobb 400 strain), were randomly assigned to 4 treatments with 3 replication. Treatment groups were; Control group in Standard ration, in Standard ration 0.1% Aloe vera (treatment 2), in Standard ration 0.2 % Aloe vera (3) and in Standard ration 0.3% Aloe vera (4) and Chicks were reared for forty-two days. The results of this study indicated that feed consumption for the entire period (up to 6 weeks) were significantly (P<0.05) increased in the treatments 1 and 4, when was added at a rate of 0 and 0.3%, compared with the other treatments (2 and 3). Body weight gain for the entire period (up to 6 weeks) were significantly (P<0.05) increased in the treatments 2, 3 and 4, when Aloe vera was added at a rate of 0.1, 0.2 and 0.3%, compared with the other treatments (1). These birds also had a significantly (P<0.05) higher feed conversion ratio than others group and finally the lowest feed cost per kg of body weight was observed in the group containing Aloe vera. More studies are required to determine the best form and to compare Aloe vera with other medicinal herbs.

Keywords: Aloe vera, Growth, Broiler and Medicinal herbs

*Correspondence
Author: Hitesh Singh
Email: shitesh463@gmail.com

Introduction

All over the globe, many plants have been exploited for their medicinal value, [1] reported about the considered opinion of World Health Organization, which states that, ‘80% of the world’s population dependent on ancestral medicines for their haleness’. For the health care of the remaining 20% population mainly residing in developed countries, therapeutic product of plants plays an important role. Still there is a requisite for the development of scientific technology for the enhancement of medicinal plants and their products. Medicinal herbs, as a new class of additives to animal and poultry feeds, have beneficial properties such as anti-oxidant, anti-microbial, and anti-fungal [2] as well as immunomodulatory and anticoccidial effects, which lead to increased use of herbs. Furthermore, many countries around the world, with plenty resources of different kinds of medicinal herbs, can use these herbs as natural feed additives for animals and poultry. The emphasis here is on those herbs that, when used to supplement feeds, are helpful in achieving a larger number of objectives (improving growth performance, improving immunity response, improving intestinal microflora, and controlling particular diseases); in other words the focus is on multifunctional herbs. A well-known herb that has received particular attention from researchers is Aloe vera (Aloe barbadensis Miller), known as one of the oldest herbs with a history that dates back to traditional medicine thousands years ago [3]. Aloe vera is found in tropical and sub-tropical climates and many countries have proper geographic features required for growing Aloe vera. The most important part of Aloe vera is its leaf which is composed of two main sections: latex and gel [4]. The gel contained in Aloe vera leaves is composed of about 98.5% to 99.5% water [5] which have medicinal effects that are useful in treating diseases. Major ingredients of Aloe vera include anthraquinones, saccharides, vitamins, enzymes, and low-molecular-weight compounds [6] which give Aloe vera its anti-inflammatory, immunomodulatory, wound-healing, anti-viral, anti-fungal, anti-tumor, anti-diabetic, and anti-oxidant effects [3]. Numerous studies suggest that many benefits of Aloe vera are attributable to polysaccharides contained in Aloe vera gel, which compose a large part of dry matter in this gel [7]. A compound often analyzed by researchers is the polysaccharide acemannan which has immunomodulatory, anti-microbial, and anti-tumor effects [6].

The poultry meat production is estimated to be about 2.47 million tonnes. The current per capita availability of eggs is around 55 eggs per year. Exports of poultry products are currently at around 457.82 crore in 2011-12 as per the report of Agricultural and Processed Food Products Export Development Authority (APEDA) [8].
Methods and Materials

Birds and Diets

The study was conducted at the Poultry Research and Training Centre, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut. A total of one hundred and twenty (120) day old chicks of Cobb 400 broiler were used for the experiment. Chicks were brooded in a warmed fumigated brooder deep Liter house and feed on a commercial broiler starter Top Feed for three weeks divided into four diet groups with three replicates (30 chickens each) on a completely randomized design. The control group was basal diet feed. For the next three groups, the diets were mixed with 0.1, 0.2 and 0.3% Aloe Vera powder, respectively. The raw Aloe Vera was purchased from a reputable dealer. The whole Fresh and matured Aloe Vera leaf was over dried and grinded using manual grinder into finer particles. The powder was submitted to the laboratory to determine the nutrient and chemical contents.

Composition

Table 1 The present investigation was carried out to study the Composition of the basal diet

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Starter ration</th>
<th>Finisher ration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition g/kg what values</td>
<td>Starter 0 - 21 days</td>
<td>Finisher 22 - 42 days</td>
</tr>
<tr>
<td>Yellow maize</td>
<td>60.00</td>
<td>61.50</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>6.00</td>
<td>10.75</td>
</tr>
<tr>
<td>Soyabean meal</td>
<td>22.00</td>
<td>18.50</td>
</tr>
<tr>
<td>Fat</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Fish meal</td>
<td>8.00</td>
<td>2.25</td>
</tr>
<tr>
<td>Mineral mixture</td>
<td>2.00</td>
<td>2.25</td>
</tr>
<tr>
<td>Common salt</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Vitamin mixture</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>L-lysine</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>DL-methionine</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>Energy</td>
<td>3.244kcal</td>
<td>Energy</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>0.791g</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>Protein</td>
<td>0.008g</td>
<td>Protein</td>
</tr>
<tr>
<td>Fat</td>
<td>0.005g</td>
<td>Fat</td>
</tr>
</tbody>
</table>

Housing and Management

The broiler chicks were housed in pens which were cleaned properly. The birds were weighed at day old to determine the initial body weight and subsequently weighed weekly to determine the body weights and body weight gains. The birds were vaccinated against New Castle disease and Infectious Bursal disease, likewise all other medications were given. The experiment lasted for 8 weeks. Body weight gain, feed conversion ratios and feed intake were obtained by calculation.

Statistical analysis

Statistical analysis was done using completely randomized design (CRD), two way analysis of variance (ANOVA) as per the procedure given by DMRT 19.0 (1995, SPSS Inc., USA). The test was employed for identifying the significant differences amongst the different treatments. A P-value less than 0.05 is considered to be statistically significant.

Results and Discussion

The Feed Consumption up to 6 weeks of age

All the treatment groups of broiler chicks was reported in Table 2. The average feed consumption was found 3508.267 ± 0.706, 3516.227 ± 6.508g, 3537.243 ± 7.840g and 3563.443 ± 1.951g in T1, T2, T3 and T4 group respectively (Table 2). Overall average feed consumption for all the treatment groups was 3531.295± 4.251 g up to six weeks of age (Table 2). The feed consumption up to 6 weeks of age ranged from 3508.267 ± 0.706 g (T1 group) to 3563.443 ± 1.951 g (T4 group) (Table 2). The feed consumption of up to 6 weeks of broiler chicks of all the treatment groups was differ significantly (P<0.05) each other groups (Table 2).

Chem Sci Rev Lett 2017, 6(22), 1238-1243

Article CS062048052 1239
Table 2 Feed Consumption up to 6 weeks of age (gram)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. of Replication</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1*</td>
<td>R2*</td>
<td>R3*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>3508.84±0.709</td>
<td>3509.34±0.712</td>
<td>3506.62±0.697</td>
</tr>
<tr>
<td>T2</td>
<td>3521.75±6.508</td>
<td>3523.66±6.507</td>
<td>3503.27±6.509</td>
</tr>
<tr>
<td>T3</td>
<td>3523.43±7.831</td>
<td>3537.76±7.849</td>
<td>3550.54±7.840</td>
</tr>
<tr>
<td>T4</td>
<td>3560.71±1.952</td>
<td>3567.06±1.953</td>
<td>3562.56±1.948</td>
</tr>
<tr>
<td>CD</td>
<td>17.196</td>
<td></td>
<td>3531.295</td>
</tr>
</tbody>
</table>

* (n=10 chicks) a, b, c, d: Means with different superscripts in each column Differ significantly (p<0.05).
* The results are reported as Mean ± SEM

The body weight gain up to 6 weeks of age

All the treatment groups of broiler chicks was presented in Table 3. The average body weight gain was found 1672.260 ± 4.153g, 1689.597 ± 3.223g, 1722.863 ± 7.603g and 1753.500 ± 4.748g in T1, T2, T3 and T4 group respectively (Table 3). Overall average body weight gain for all the treatment groups was 1709.55 ± 4.931 g up to 6 weeks of age (Table 3). The body weight gain up to 6 weeks of age ranged from 1672.260 ± 4.153 g (T1 group) to 1753.500 ± 4.748 g (T4 group). The body weight gain of up to 6 weeks of broiler chicks of all the treatment groups was differ significantly (P<0.05) each other (Table 3).

Table 3 Body Weight Gain up to 6weeks of age (gram)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. of Replication</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1*</td>
<td>R2*</td>
<td>R3*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>1664.38±4.149</td>
<td>1673.92±4.158</td>
<td>1678.48±4.153</td>
</tr>
<tr>
<td>T2</td>
<td>1685.33±3.223</td>
<td>1695.9±3.221</td>
<td>1687.56±3.224</td>
</tr>
<tr>
<td>T3</td>
<td>1711.11±7.600</td>
<td>1720.38±7.601</td>
<td>1737.1±7.608</td>
</tr>
<tr>
<td>T4</td>
<td>1744.82±4.740</td>
<td>1754.54±4.756</td>
<td>1761.14±4.748</td>
</tr>
<tr>
<td>CD</td>
<td>17.201</td>
<td></td>
<td>1709.55</td>
</tr>
</tbody>
</table>

* (n=10 chicks) a, b, c, d: Means with different superscripts in each column Differ significantly (p<0.05).
* The results are reported as Mean ± SEM
The overall body weight gain up to 6 week of age was higher for the group fed diet T4. Since there was inclusion of 0.3% Aloevera in diet T4. The growth may be due to inclusion Aloevera. [10] Who supplemented Aloevera (10^5, 10^6, 10^7 cfu Aloevera/kg) in broiler chicks similar the body weight gain supplemented in (treatment) group 2230 ± 17.40 g in comparison to non-supplemented group (control). [16] Who supplemented Aloevera Protexin (150 g/ton of the starter diets and 50 g/ton of the finisher diets) in broiler chicks lower the body weight gain supplemented in (treatment) group 2075.57 ± 23.87 g in comparison to non-supplemented group (control). [14] Who supplemented Aloevera PRIMALAC (0 and 900 g/ton and prebiotic FERMACTO (0, 1000 and 2000 g/ton) in broiler chicks increase the body weight gain supplemented in (treatment) group 2343.67 ± 32.89 g in comparison to non-supplemented group (control). [12] Who supplemented Aloevera (0.5 ml of Aloevera per one liter of water for the whole growth period) in broiler chicks lower the body weight gain supplemented in (treatment) group 1748.15 ± 9.68 g in comparison to non-supplemented group (control). [17] Conducted experiment on growth performance of broiler, body weight gain was reported from 1919.0 to 1770.0 g during 0-6 weeks of age with average weight gain was 1774.53 g. Mean value was lower than present investigation (1872.95 ± 4.008 g). This difference can be contributed by genetically potential of chicks. [15] who supplemented Aloevera (T2 0.05%, 0.05% Aloevera and Bio-moss 0.1%) in broiler chicks increase the body weight gain supplemented in (treatment) group 2274 ± 18.6g in comparison to non-supplemented group (control).

The feed conversion ratio up to 6 weeks of age

All the treatment groups of broiler chicks were reported in Table 4. The average feed conversion ratio was found 2.090 ± 0.006, 2.073 ± 0.003, 2.047 ± 0.003 and 2.030 ± 0.006 in T1, T2, T3 and T4 group respectively (Table 4). Overall average feed conversion ratio (FCR) for all the treatment groups was 2.06 ± 0.004 up to six weeks of age (Table 4). The feed conversion ratio (FCR) at up to 6 weeks of age ranged from 2.090 ± 0.006 (T1 group) to 2.030 ± 0.006 (T4 group) (Table 4). The feed conversion ratio (FCR) of up to 6 weeks of broiler chicks of all the treatment groups was differ significantly (P<0.05) to each other except T1 vs. T2, T2 vs. T3 and T3 vs. T4 (Table 4).

Table 4 Feed Conversion ratio up to 6 weeks of age

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. of Replication</th>
<th>Mean</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.10±0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>2.08±0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>2.05±0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>2.04±0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>0.016 Overall mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.09±0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>2.07±0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>2.05±0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>2.03±0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2.08±0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>2.07±0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>2.04±0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>2.02±0.006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (n=10 chicks) a, b, c, d: Means with different superscripts in each column Differ significantly (p<0.05).
*The results are reported as Mean ± SEM.

The feed conversion ratio up to 6 weeks of age of all the treatment groups of broiler chicks was reported in Table 4. Average feed conversion ratio for growing chicks was varies from 2.03 to 2.28 as reported [17] reported that the average value of feed conversion ratio ranged from 1.757 to 1.945 which are lower than the reported by above scientist this difference may be due to difference in composition of diet or it may be due to genetic improvement in chicks. [11] Reported feed conversion ratio value ranges from 1.86 to 1.95. These results are in agreement with present experiment. [18] Who found that using dietary supplementation of Aloeveras alone in broilers had a significant positive effect on the feed conversion ratio compared to the control. [16] Reported that feed conversion ratio improved by the supplementation of dietary Aloevera Protexin (150 g/ton of the starter diets and 50 g/ton of the finisher diets) 1.925 ± 0.033 compared to the control group. [13] Who found that using dietary supplementation of Aloevera Protexin in broilers had a significant positive effect on the feed conversion ratio compared to the control. [12] Reported that feed conversion ratio improved by the supplementation of dietary Aloevera Protexin (0.5 ml of Aloevera per one liter of water for the whole growth period) 2.45 ± 0.021 compared to the control group. [14] Reported that feed conversion ratio improved by the supplementation of dietary Aloevera Protexin (without or with 1.5 × 10^5 cfu/g feed) 1.680 ± 0.018 compared to the control group. [15] Reported that feed conversion ratio low by the supplementation of dietary Aloevera Protexin (T2 0.05%, 0.05% Aloevera and Bio-moss 0.1%) 1.82 ± 0.1 compared to the control group.
Conclusion

In last decade, there is a renewed interest in the development of herbal drugs which has underlined understanding the mechanism of action rather than blind faith in people and stories, as in the past. Several approaches in exploiting the herbal wealth of the world in phytomedicine have explored many phytochemicals from variety of plants. Nonetheless, even with the limited reports on mechanism of activity it has become obvious that numerous mechanisms would have been involved in different activities of a given herbal medicine.

It could be concluded that, under the condition of the present study, Aloe Vera powder at 0.3% dietary inclusion are more efficient than control group on improving broiler performance. Therefore, dietary inclusion of Aloe Vera in broiler diets is highly recommended, it will be interesting to try different inclusion levels of Aloe Vera since there was no detrimental effect recorded both health wise and performance.

Acknowledgments

The authors are highly thankful Director of Research, S.V.P. University of Agriculture and Technology, Meerut for providing necessary facilities and funds for present research work.

References

© 2017, by the Authors. The articles published from this journal are distributed to the public under “Creative Commons Attribution License” (http://creativecommons.org/licenses/by/3.0/). Therefore, upon proper citation of the original work, all the articles can be used without any restriction or can be distributed in any medium in any form.

Publication History
Received 06th May 2017
Revised 27th May 2017
Accepted 12th June 2017
Online 30th June 2017