Design, Synthesis, Computer Modeling and Pharmacological Evaluation of Some New Condensed Pyrimidines

Helmy Sakr
Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt

Abstract

Condensed pyrimidines are still being pharmacologically interesting compounds as many derivatives showed a broad spectrum of biological activities. Thus, some new quinazolino[1,2-c]qunazolin-13-ones and 2,3,4,5-tetrahydro-2,5-dioxo- $1 \mathrm{H}-1,2,4$-triazino[4,3-c]quiazolines were synthesized and characterized by both elemental and spectral analyses. Pharmacological evaluation of these derivatives showed that some vinyl derivatives of quinazolinoquinazolinone possess a significant hypnotic activity compared with phenobarbitone, whereas, other quinazolinoquinazolinones and triazinoquinazolines, showed mild non-narcotic analgesic activity compared with paracetamol.

Keywords: Quinazoline, triazinoquiazolines, vinyl quinazolinones, analgesic, anticonvulsant activity

*Correspondence

Helmy Sakr
Email: helmysakr22@yahoo.com

Introduction

In the last few years, the attention was oriented towards the synthesis and biological evaluation of some new classes of condensed pyrimidines as they exhibit a broad spectrum of biological activities [1-8]. Indeed, many of condensed pyrimidine derivatives have been reported to possess analgesic, antipyretic and anti-inflammatory activities [9-15]. On the other hand, many fused pyrimidines such as quinazolines are biologically versatile compounds possessing sedative-hypnotic, anticonvulsant, analgesic, anti-inflammatory, diuretic and other diverse activities [16-20]. In addition many triazines were reported to be analgesic and anti-inflammatory [21]. Moreover, it is well known that the methyl group at position -2 of quinazoline ring system possesses high reactivity and can be condensed with many aldehydes to afford the corresponding 2 -vinyl derivatives [22] Many 2 -vinyl quinazolinones were reported to possess a marked CNS depressant and muscle relaxant activities [23,24].

Accordingly, it seemed most interesting to synthesize some new quinazolinoquinazolinones (III, IV) and triazinoquinazolines (\mathbf{X}) as new classes of condensed pyrimidines with the aim to evaluate their pharmacological activities. Scheme 1, $\mathbf{2}$ and $\mathbf{3}$ were adopted for the preparation of compounds (III, IV and \mathbf{X}).

Experimental

All melting points were carried on Gallen Kamp melting point apparatus at Faculty of Pharmacy, Al-Azhar University and are uncorrected. The infrared spectra were recorded on Brucker-Vector-22F T-IR spectrophotometer using the potassium bromide disc technique at Faculty of Pharmacy, Al-Azhar University. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian-Gemini-300-MHZ spectrophotometer using DMSO-d6 as a solvents and TMS as internal reference. The chemical shift values were recorded in $\delta \mathrm{ppm}$ downfield the TMS signal. The mass spectra were recorded on AZH-ph-AR- XO_{2} Mass spectrometer. Elemental analyses were performed on CHN analyzer. All spectral measurements have been performed at the Micro analytical Center, Cairo University, Cairo, Egypt.

Scheme 1 Synthesis of 6-Alkylquinazolino[1,2-c] quinazolin-13-ones

Scheme 2 Synthesis of 6-(2-Substituted vinyl)quinazolino[1,2-c]quinazolin-13-ones

$\mathrm{X}=\mathrm{Br}, \mathrm{Cl}, \mathrm{I}$
$Y=\mathrm{H}, \mathrm{Br}, \mathrm{Cl}, \mathrm{I}$
$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{COC}_{6} \mathrm{H}_{5} \& \mathrm{C}_{6} \mathrm{H}_{11}$

Scheme 3 Synthesis of 2,3,4,6-Tetrahydro-2,5-dioxo-1H-1,2,4-triazino[4,3-c]quinazolines

Anthranilic acids (I) and (V)

According to certain reported procedures, some substituted anthranilic acids were prepared such as 3,5dibromooanthranilic acids [25] , 3,5-dichloroanthranilic acids [26,27], 5 -iodo- and 3,5-diiodoanthranilic acids, [28] , 3,5-dibromo-N-allyl-, 3,5-dichloro-N- allyl-, 5-iodo-N-allyl-, 3,5-diiodo-N-allyl-, 3,5-dibromo-N- benzyl-, 3,5-dichloro-N- benzyl-, 5 -iodo-N- benzyl-, 3,5-diiodo-N- benzyl-, 3,5-dibromo-N-benzoyl-, 3,5-dichloro-N- benzoyl-, 5 -iodo-N-benzoyl-, 3,5-diiodo-N-benzoyl -, 3,5-dibromo-N-(n-butyl)-, 3,5-dichloro-N- (n-butyl)-, 5 -iodo-N-(n-butyl), 3,5-diiodo-N-(n-butyl)-, 3,5-dibromo-N-cyclohexyl-, 3,5-dichloro-N- cyclohexyl-, 5-iodo-N-cyclohexyl-, 3,5-diiodoN -cyclohexyl-, 3,5 -dibromo-N-ethyl-, 3,5-dichloro-N- ethyl-, 5 -iodo-N-ethyl-, 3,5-diiodo-N-ethyl-, 3,5-dibromo-N-methyl-, 3,5-dichloro-N- methyl-, 5-iodo-N-methyl-, 3,5-diiodo-N-methyl-, 3,5-dibromo-N-(n-propyl)-, 3,5-dichloroN - (n-propyl)-, 5 -iodo-N-(n-propyl)-, 3,5-diiodo-N-(n-propyl)-, 3,5-dibromo-N-phenyl-, 3,5-dichloro-N- phenyl-, 5-iodo-N-phenyl-, 3,5-diiodo-N-phenyl anthranilic acids [29,30].

4H-3,1-benzoxazin-4-ones (II)

Using a reported procedure [31] the following benzoxazinones were prepared, 6-iodo-2-ethyl, 6,8-diiodo-2-ethyl, 6-iodo-2-methyl, 6,8-diiodo-2-methyl.

$\mathbf{2 , 4 (1 H , 3 H})$-Quinazolinediones (VI)

Following a reported procedure $[32,33]$ many quinazolinediones $(\mathbf{V I})$ were obtained namely 6,8 -dibromo-1-allyl-, 1-benzoyl-, 1-benzyl-, 1-(n-butyl)-, 1-cyclohexyl-, 1-ethyl-, 1-methyl-, 1-phenyl- and 1-(n-propyl)-, 6,8-dichloro-1-allyl-, 1-benzoyl-, 1-benzyl-, 1-(n-butyl)-, 1-cyclohexyl-, 1-ethyl-, 1-methyl-, 1-phenyl- and 1-(n-propyl)-, 6-iodo-1-allyl-, 1-benzoyl-, 1-benzyl-, 1-(n-butyl)-, 1-cyclohexyl-, 1-ethyl-, 1-methyl-, 1-phenyl- and 1-(n-propyl)-, 6,8-diiodo-1-allyl-, 1-benzoyl-, 1-benzyl-, 1-(n-butyl)-, 1-cyclohexyl-, 1-ethyl-, 1-methyl-, 1-phenyl- and 1-(n-propyl)$2,4(1 \mathrm{H}, 3 \mathrm{H})$ quinazolinediones.

Potassium salts of $\mathbf{2 , 4} \mathbf{(\mathbf { 1 H } , \mathbf { 3 H }) \text { -quinazolinediones (VII) }}$

By application of the reported procedure $[32,33]$ the potassium salts of quinazolinediones (VI) were prepared.

3-Ethoxycarbonylmethyl-2,4-(1H,3H)-quinazolinediones (VIII)

The following esters: 6,8-dibromo-1-allyl-3-ethoxy carbonylmethyl-, 1-benzoyl-3-ethoxy carbonylmethyl-, 1-benzyl3 -ethoxy carbonylmethyl-, 1-(n-butyl)-3-ethoxy carbonylmethyl-, 1-cyclohexyl-3-ethoxy carbonylmethyl-, 1-ethyl-3ethoxy carbonylmethyl-, 1-methyl-3-ethoxy carbonylmethyl-, 1-(n-propyl)-3-ethoxy carbonylmethyl-, 1-phenyl-3ethoxy carbonylmethyl-, 6,8-dichloro-1-allyl-3-ethoxy carbonylmethyl-, 1-benzoyl-3-ethoxy carbonylmethyl-, 1-benzyl-3-ethoxy carbonylmethyl-, 1-(n-butyl)-3-ethoxy carbonylmethyl-, 1-cyclohexyl-3-ethoxy carbonylmethyl-, 1-ethyl-3-ethoxy carbonylmethyl-, 1 -methyl-3-ethoxy carbonylmethyl-, 1 -(n-propyl)-3-ethoxy carbonylmethyl-, 1 -phenyl-3-ethoxy carbonylmethyl-, 6-iodo-1-allyl-3-ethoxy carbonylmethyl-, 1-benzoyl-3-ethoxy carbonylmethyl-, 1-benzyl-3-ethoxy carbonylmethyl-, 1-(n-butyl)-3-ethoxy carbonylmethyl-, 1-cyclohexyl-3-ethoxy carbonylmethyl-, 1-ethyl-3-ethoxy carbonylmethyl-, 1-methyl-3-ethoxy carbonylmethyl-, 1-(n-propyl)-3-ethoxy carbonylmethyl-, 1-phenyl-3-ethoxy carbonylmethyl-, 6,8-diiodo-1-allyl-3-ethoxy carbonylmethyl-, 1-benzoyl-3-ethoxy carbonylmethyl-, 1-benzyl-3-ethoxy carbonylmethyl-, 1-(n-butyl)-3-ethoxy carbonylmethyl-, 1-cyclohexyl-3-ethoxy carbonylmethyl-, 1 -ethyl-3-ethoxy carbonylmethyl-, 1-methyl-3-ethoxy carbonylmethyl-, 1-(n-propyl)-3-ethoxy carbonylmethyl-, 1-phenyl-3-ethoxy carbonylmethyl-2,4-($1 \mathrm{H}, 3 \mathrm{H}$)- quinazolinediones (VIII) were obtained following a reported procedure $[32,33]$.

6-Alkylquinazolino[1,2-c] quinazolin-13-ones (III)

Anthranilamide (2.72 gm., 0.02 mole) was added to the appropriate benzoxazinone ($\mathbf{I I}$) (0.02 mole) dissolved in glacial acetic acid (30 ml) containing fused sodium acetate (2 gm .). The reaction mixture was refluxed for 8 hours, then poured over cold water with stirring and the solid product so obtained was recrystallized from ethanol (Table 1).

Figure 1 Chemical structure of compound III
Table 1 6-Alkylquinazolino[1,2-c]quinazolin-13-ones (III)

Comp. III	\mathbf{X}	\mathbf{Y}	\mathbf{R}	Yield $\mathbf{\%}$	m.p. ${ }^{\circ} \mathbf{C}$	M. Form.		Elemental analysis		
$\mathbf{M} . \mathbf{W t}$	\mathbf{C}	\mathbf{H}	\mathbf{N}							
$\mathbf{1}$	I	H	CH_{3}	90	$265-7$	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OI}$	49.61	2.58	10.85	
						387	49.82	2.67	10.87	
$\mathbf{2}$	I	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	85	$280-2$	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OI}$	50.87	2.99	10.47	
						401	50.91	2.81	10.62	
$\mathbf{3}$	I	I	CH_{3}	74	$290-2$	$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OI}$	37.42	1.75	8.18	
						513	37.48	1.89	8.35	
$\mathbf{4}$	I	I	$\mathrm{C}_{2} \mathrm{H}_{5}$	68	>300	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OI}_{2}$	38.70	2.08	7.96	
						527	38.86	2.17	7.96	

Table $2{ }^{1} \mathrm{H}$ NMR Spectral data of compounds (III)

Comp.	ס, multiplicity, protons
III. 1	8.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-11.), 7.76-7.68$ (2H, m, H-9, H-3), 7.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1$), 7.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-4$), 7.17 $(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-8), 7.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
III. 2	8.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-11$), 8.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 7.69 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 7.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1$), 7.31 ($1 \mathrm{H}, \mathrm{d}$, $\mathrm{H}-4), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-8), 7.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$.
III. 3	$8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-9), 8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-11),. 7.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 7.31(1 \mathrm{H}, \mathrm{d}$, $\mathrm{H}-4), 7.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
III. 4	8.28 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-9$), 8.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-11$), 7.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 7.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1$), 7.31 ($1 \mathrm{H}, \mathrm{d}$, $\mathrm{H}-4), 7.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$.

Table 3 Mass Spectral data of compounds (III)

Comp.	$\mathbf{m / \mathbf { z } , (\text { abound \%) }}$
III.1	$\left.387(37.5) \mathrm{M}_{+}^{+}\right), 372(88.6)\left(\mathrm{M}-\mathrm{CH}_{3}\right), 105(100.0)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right)$.
III.2	$\left.401(23.5) \mathrm{M}^{+}\right), 386(53.5)\left(\mathrm{M}-\mathrm{CH}_{3}\right), 372(92.0)\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right), 105(73.8)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90$
III.3	(100) $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$.
III.4	$\left.527(16.3) \mathrm{M}_{+}^{+}\right), 498(27.8)\left(\mathrm{M}-\mathrm{CH}_{3}\right), 105(62.7)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90(100)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$. $(100)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$.

IR (III.1-4): $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1690-1700 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ stretching, 1600,1560 and $1480 \mathrm{~cm}^{-1}$ are three bands of quinazoline ring system.

6-(2-Substituted vinyl)quinazolino[1,2-c]quinazolin-13-ones (IV)

The appropriate 6 -methylquinazolino[1,2-c]quinazolin-13-ones (III) (0.01 mole) was mixed with suitable aldehyde (0.04 mole) and the reaction mixture was heated under anhydrous condition in an oil bath at $160-180^{\circ} \mathrm{C}$ for two hours. The melted product was solidified on cooling and crystallized from ethanol to yield colorless needles (Table 4).

Figure 2 Chemical structure of compound IV
Table 4 6-(2-Substituted vinyl)quinazolino[1,2-c]quinazolin-13-ones (IV)

Comp. IV	X	Y	R	Yield \%	$\underset{{ }_{\circ}^{\circ} \mathbf{C}}{\mathbf{m} . \mathbf{p}}$	M. Form. / M.Wt	Elemental analysis		
							C	H	N
1	I	H	CH_{3}	90	265-7	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OI}$	52.30	2.90	10.16
						413	52.47	2.92	10.46
2	I	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	87.5	273-5	$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OI}$	58.10	2.94	8.84
						475	50.31	2.98	8.96
3	I	H	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	92.4	290-2	$\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OClI}$	54.22	2.55	8.25
						${ }_{509}$	54.38	2.76	8.41
4	I	H	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	92.4	$\begin{gathered} 288- \\ 90 \end{gathered}$	$\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OClI}$	54.22	2.55	8.25
						509	54.40	2.63	8.47
5	I	H	2,4-Cl $\mathrm{C}_{6} \mathrm{H}_{3}$	92.4	296-8	$\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OCl}_{2} \mathrm{I}$	50.73	2.20	7.72
						544	50.84	2.43	7.92
6	I	H	$2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	92.4	297-9	$\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OCl}_{2} \mathrm{I}$	50.73	2.20	7.72
						544	50.98	2.36	7.87
7	I	H	4-($\left.\mathrm{OCH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	92.4	280-2	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}$	57.02	3.16	8.31
						505	57.27	3.35	8.50
8	I	H	2,4-($\left.\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	92.4	290-2	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{I}$	56.07	3.36	7.85
						535	56.36	3.48	7.97
9	I	H	$4-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}$	92.4	$\begin{gathered} 278- \\ 80 \end{gathered}$	$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}$	56.21	2.85	8.55
						491	56.46	2.98	8.73
10	I	I	CH_{3}	85.7	>300	$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OI}_{2}$	40.07	2.04	7.79
						539	40.32	2.19	7.85
11	I	I	$\mathrm{C}_{6} \mathrm{H}_{5}$	84.6	>300	$\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OI}_{2}$	45.92	2.16	6.98
						601	46.13	2.34	7.28
12	I	I	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	94.1	>300	$\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OClI}_{2}$	43.46	1,88	6.61
						635	43.67	1.98	6.83
13	I	I	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	92	>300	$\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OClI}_{2}$	43.46	1.88	6.61
						635	43.75	1.90	6.83
14	I	I	2,4-Cl $2_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	76	>300	$\mathrm{C}_{23} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OCl}_{2} \mathrm{I}_{2}$	41.19	1.64	6.27
						670	41.36	1.81	6.51
15	I	I	$2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	80	>300	$\mathrm{C}_{23} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OCl}_{2} \mathrm{I}_{2}$	41.19	1.64	6.27
						670	41.27	1.77	6.43
16	I	I	$4-\left(\mathrm{OCH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	67	>300	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}_{2}$	45.64	2.37	6.65
						631	45.81	2.65	6.74
17	I	I	2,4-($\left.\mathrm{OCH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	70.2	>300	$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{I}_{2}$	45.38	2.57	6.35
						661	45.63	2.74	6.52
18	I	I	$4-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}$	78.5	>300	$\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{I}_{2}$	44.73	2.10	6.80
						617	44.88	2.29	6.97

Table $5{ }^{1} \mathrm{H}$ NMR Spectral data of compounds (IV)

Comp.	ס, multiplicity, protons
IV. 1	$8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-11),. 7.68-7.0(6 \mathrm{H}, \mathrm{m}$, aromatic H$), 5.82(1 \mathrm{H}, \mathrm{m}$, vinyl H$), 5.19(1 \mathrm{H}, \mathrm{d}$, vinyl H), 2.05 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
IV. 2	$8.10(1 \mathrm{H}, \mathrm{d}$, vinyl H), 8.06-7.0 ($12 \mathrm{H}, \mathrm{m}$, aromatic protons.), 7.20 ($1 \mathrm{H}, \mathrm{d}$, vinyl H).
IV. 3	$8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-11$.$) , 7.68-7.0 (10 \mathrm{H}, \mathrm{m}$, aromatic H), $7.20(1 \mathrm{H}, \mathrm{d}$, vinyl H), 6.70 ($1 \mathrm{H}, \mathrm{d}$, vinyl H).
IV. 4	8.20-7.0 $(11 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.10(1 \mathrm{H}, \mathrm{d}$, vinyl H), $6.50(1 \mathrm{H}, \mathrm{d}$, vinyl H).
IV. 5	8.12-7.20 ($10 \mathrm{H}, \mathrm{m}$, aromatic H), 7.20 (1 H , d, vinyl H.), 6.65 ($1 \mathrm{H}, \mathrm{d}$, vinyl H).
IV. 6	8.10-7.18 ($10 \mathrm{H}, \mathrm{m}$, aromatic H$)$, 7.10 (1 H , d, vinyl H.), 6.50 (1 H , d, vinyl H).

Table 6 Mass Spectral data of compounds (IV)

Comp.	m/z (abound \%)
IV. 1	$413(18)\left(\mathrm{M}^{+}\right), 398(100)\left(\mathrm{M}_{-} \mathrm{CH}_{3}\right), 372(33)\left(\mathrm{M}-\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right), 105(76.5)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90(100)$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$.
IV. 2	$\begin{aligned} & 475(34)\left(\mathrm{M}^{+}\right), 398(100)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 372(47)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}\right), 105(71)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90(100) \\ & \left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right) \end{aligned}$
IV. 7	$\begin{aligned} & \left.505(23) \mathrm{M}^{+}\right), 397(29)\left(\mathrm{M}_{-}-\mathrm{OCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 371(74)\left(\mathrm{M}_{-}-\mathrm{OCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}\right), 105(69)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), \\ & 90(100)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right) . \end{aligned}$
IV. 9	$491(31)\left(\mathrm{M}^{+}\right), 398(48)\left(\mathrm{M}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 371(78)\left(\mathrm{M}-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}-\mathrm{CH}\right), 105(82.5)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90$ (100) $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$.
IV. 11	$601(26)\left(\mathrm{M}^{+}\right), 524(100)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 498(41)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}\right), 105(81.5)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90(100)$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$.

IR (IV.1-4): $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1680 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ stretching, 1610,1580 and $1480 \mathrm{~cm}^{-1}$ are three bands of quinazoline ring system.

[2,4 (1H,3H)-Quinazolinedione-3-yl] acetic acid hydrazide (IX)

A mixture of the appropriate derivative of 3-Ethoxycarbonylmethyl-2,4-(1H,3H)- quinazolinediones (VIII) (0.01 mole and hydrazine hydrate ($10 \mathrm{ml}, 80 \%$) in ethanol (10 ml) was stirred and heated at $50^{\circ} \mathrm{C}$ for two hours. The reaction mixture was cooled and treated with water (40 ml). The obtained crude product was collected by filtration, washed with water and then recrystallized from ethanol (Table 7).

Figure 3 Chemical structure of compound IX

Table 7 [2,4 (1H,3H)-Quinazolinedione-3-yl] acetic acid hydrazide (IX)

Comp. IX	X	Y	R	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	m.p. ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { M. Form./ } \\ & \text { M.Wt } \end{aligned}$	Elemental analysis		
							C	H	N
1	Br	Br	CH_{3}	100	230-2	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	32.51	2.46	13.79
						406	32.68	2.61	13.82
2	Br	Br	$\mathrm{C}_{2} \mathrm{H}_{5}$	90	248-50	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	34.28	2.85	13.33
						420	34.36	2.97	13.51
3	Br	Br	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	95	261-3	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	36.11	2.77	12.96
						432	36.23	2.76	12.96
4	Br	Br	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	80	268-70	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	35.94	3.22	12.90
						434	35.97	3.31	12.94
5	Br	Br	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	80	274-6	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	37.50	3.57	12.50
						448	37.67	3.63	12.71
6	Br	Br	$\mathrm{C}_{6} \mathrm{H}_{5}$	90	281-3	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	41.02	2.56	11.96
						468	41.19	2.51	11.71
7	Br	Br	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	100	287-9	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	42.32	2.90	11.61
						482	42.44	2.97	11.82
8	Br	Br	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	100	290-2	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Br}_{2}$	41.12	2.41	11.29
						496	41.37	2.64	11.41
9	Br	Br	$\mathrm{C}_{6} \mathrm{H}_{11}$	75	295-7	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	40.50	3.79	11.81
						474	40.67	3.91	11.88
10	Cl	Cl	CH_{3}	85	221-3	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	41.64	3.15	17.66
						317	41.81	3.34	17.83
11	Cl	Cl	$\mathrm{C}_{2} \mathrm{H}_{5}$	90	230-2	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	43.50	3.62	16.91
						331	43.78	3.76	16.98
12	Cl	Cl	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	100	236-8	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	45.48	3.49	16.32
						343	45.70	3,62	16.51
13	Cl	Cl	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	85	241-3	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	45.21	4.05	16.23
						345	45.34	4.22	16.31
14	Cl	Cl	n - $\mathrm{C}_{4} \mathrm{H}_{9}$	76.5	250-2	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	46.79	4.45	15.60
						359	46.93	4.52	15.60
15	Cl	Cl	$\mathrm{C}_{6} \mathrm{H}_{5}$	84	264-6	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	50.65	3.16	14.77
						379	50.87	3.31	14.90
16	Cl	Cl	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	76	267-9	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	51.90	3.56	14.24
						393	51.96	3.71	14.41
17	Cl	Cl	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	95	282-4	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cl}_{2}$	50.12	2.94	13.75
						407	50.37	2.98	13.94
18	Cl	Cl	$\mathrm{C}_{6} \mathrm{H}_{11}$	70	270-2	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	49.87	4.67	14.54
						385	49.96	4.76	14.61
19	I	H	CH_{3}	73	284-6	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	35.29	2.94	14.97
						374	35.41	2.96	14.98
20	I	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	80	285-7	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	37.11	3.35	14.43
						388	37.35	3.57	14.60
21	I	H	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	85	291-3	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	39.00	3.25	14.00
						400	39.07	3.46	14.13
22	I	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	74.5	296-8	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	38.80	3.73	13.93
						402	38.61	3.92	13.80
23	I	H	n - $\mathrm{C}_{4} \mathrm{H}_{9}$	72	>300	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	40.38	4.08	13.46
						416	40.52	4.22	13.66
24	I	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	80	>300	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	44.03	2.98	12.84
						436	44.18	3.04	12.91
25	I	H	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	83.6	>300	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	45.33	3.33	12.44
						450	45.50	3.41	12.64
26	I	H	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	85	>300	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{I}$	43.96	2.80	12.06
						464	43.82	2.66	12.20
27	I	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	76.4	>300	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	43.43	4.29	12.66
						442	43.60	4.36	12.78

28	I	I	CH_{3}	70	>300	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	26.40	2.00	11.20
						500	26.51	2.11	11.34
29	I	I	$\mathrm{C}_{2} \mathrm{H}_{5}$	72	>300	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	28.01	2.33	10.89
						514	28.34	2.40	10.71
30	I	I	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	80	>300	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	29.65	2.28	10.64
						526	29.81	2.40	10.79
31	I	I	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	67	>300	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	29.54	2.65	10.60
						528	29.70	2.81	10.79
32	I	I	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	65	>300	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	30.99	2.95	10.33
						542	31.12	3.01	10.50
33	I	I	$\mathrm{C}_{6} \mathrm{H}_{5}$	70	>300	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	34.16	2.13	9.96
						562	34.28	2.33	9.97
34	I	I	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	78	>300	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	35.41	2.43	9.72
						576	35.30	2.60	9.77
35	I	I	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	80	>300	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{I}_{2}$	34.57	2.03	9.49
						590	34.88	2.21	9.60
36	I	I	$\mathrm{C}_{6} \mathrm{H}_{11}$	64.5	>300	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	33.80	3.16	9.85
						568	33.93	3.25	9.87

2,3,4,6-Tetrahydro-2.5-dioxo-1H-1,2,4-triazino[4,3-c]quinazolines (X)

A mixture of the appropriate hydrazide ($\mathbf{I X}$) (0.01 mole), fused sodium acetate (1 g .) and glacial acetic acid (30 ml) was refluxed for two hours. The obtained solid product was isolated and recrystallized from acetic acid to afford white crystalline solids (Table 8).

Figure 4 Chemical structure of compound X
Table 8 2,3,4,6-Tetrahydro-2.5-dioxo-1H-1,2,4-triazino[4,3-c]quinazolines (X)

$\underset{X}{\text { Comp. }}$	X	Y	R	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	m.p. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { M. Form./ } \\ \text { M.Wt } \end{gathered}$	Elemental analysis		
							C	H	N
1	Br	Br	CH_{3}	100	230-2	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	34.02	2.06	14.43
						388	34.27	2.27	14.68
2	Br	Br	$\mathrm{C}_{2} \mathrm{H}_{5}$	90	248-50	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	35.82	2.48	13.93
						402	35.95	2.67	13.84
3	Br	Br	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	95	261-3	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	37.68	2.41	13.52
						414	37.81	2.65	13.65
4	Br	Br	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	80	268-70	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	37.50	2.88	13.46
						416	37.71	2.95	13.57
5	Br	Br	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	80	274-6	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	39.06	3.25	13.02
						430	39.21	3.27	13.16
6	Br	Br	$\mathrm{C}_{6} \mathrm{H}_{5}$	90	281-3	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	42.66	2.22	12.44
						450	42.81	2.40	12.45
7	Br	Br	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	100	287-9	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	43.96	2.58	12.06
						464	43.99	2.69	12.19
8	Br	Br	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	100	290-2	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}_{2}$	42.67	2.09	11.71
						478	42.81	2.23	11.95

9	Br	Br	$\mathrm{C}_{6} \mathrm{H}_{11}$	75	295-7	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}_{2}$	42.10	3.50	12.28
						456	42.31	3.71	12.37
10	Cl	Cl	CH_{3}	85	221-3	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	44.14	2.67	18.72
						299	44.32	2.81	18.80
11	Cl	Cl	$\mathrm{C}_{2} \mathrm{H}_{5}$	90	230-2	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	46.00	3.19	17.89
						313	46.21	3.26	17.97
12	Cl	Cl	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	100	236-8	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	48.00	3.07	17.23
						325	48.13	3,16	17.41
13	Cl	Cl	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	85	241-3	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	47.70	3.66	17.12
						327	47.73	3.81	17.31
14	Cl	Cl	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	76.5	250-2	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	49.26	4.10	16.42
						341	49.42	4.21	16.61
15	Cl	Cl	$\mathrm{C}_{6} \mathrm{H}_{5}$	84	264-6	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	53.18	2.77	15.51
						361	53.22	2.81	15.53
16	Cl	Cl	CH_{2} - $\mathrm{C}_{6} \mathrm{H}_{5}$	67	269-1	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	54.40	3.20	14,93
						375	54.62	3.43	14.97
17	Cl	Cl	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	95	282-4	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}_{2}$	52.44	2.57	14.39
						389	52.60	2.64	14.66
18	Cl	Cl	$\mathrm{C}_{6} \mathrm{H}_{11}$	70	270-2	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$	52.31	4.35	15.25
						367	52.54	4.66	15.43
19	I	H	CH_{3}	73	284-6	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	37.07	2.52	15.73
						356	37.23	2.58	15.88
20	I	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	80	285-7	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	38.91	2.97	15.13
						370	38.97	3.08	15.25
21	I	H	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	85	291-3	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	40.83	2.87	14.65
						382	40.94	2.83	14.70
22	I	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	74.5	296-8	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	40.62	3.38	14.58
						384	40.51	3.42	14.73
23	I	H	n - $\mathrm{C}_{4} \mathrm{H}_{9}$	72	>300	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	42.21	3.76	14.07
						398	42.44	3.91	14.19
24	I	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	80	>300	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	45.93	2.63	13.39
						418	45.83	2.70	13.51
25	I	H	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	83.6	>300	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	47.22	3.00	12.96
						432	47.49	3.07	12.81
26	I	H	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	85	>300	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}$	45.73	2.46	12.55
						446	45.94	2.51	12.70
27	I	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	76.4	>300	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}$	45.28	4.00	13.20
						424	45.29	4.11	13.34
28	I	I	CH_{3}	70	>300	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	27.41	1.67	11.62
						482	27.51	1.79	11.73
29	I	I	$\mathrm{C}_{2} \mathrm{H}_{5}$	72	>300	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	29.03	2.01	11.29
						496	29.31	2.19	11.40
30	I	1	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	80	>300	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	30.70	1.96	11.02
						508	30.93	1.98	11.34
31	I	I	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	67	>300	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	30.58	2.35	10.98
						510	30.62	2.44	10.99
32	I	I	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	65	>300	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	32.06	2.67	10.68
						524	32.39	2.81	10.73
33	I	I	$\mathrm{C}_{6} \mathrm{H}_{5}$	70	>300	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	35.29	1.83	10.29
						544	35.41	1.97	10.43
34	1	1	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	78	>300	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	36.55	2.15	10.03
						558	36.74	2.49	10.21
35	I	1	$\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{5}$	80	>300	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{I}_{2}$	35.66	1.74	9.79
						572	35.90	1.89	9.95
36	I	I	$\mathrm{C}_{6} \mathrm{H}_{11}$	64.5	>300	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{I}_{2}$	34.90	2.90	10.18
						550	34.97	2.94	10.23

Table $9{ }^{1} \mathrm{H}$ NMR of 2,3,4,6-Tetrahydro-2.5-dioxo-1H-1,2,4-triazino[4,3-c]quinazolines (X)

Comp. X	δ, multiplicity, protons
X. 1	$\begin{aligned} & 10.40(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}-\mathrm{C}=\mathrm{O}-), 7.96(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-8), 7.89(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-10), 4.0\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{2}\right), 3.44 \\ & \left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$
X. 8	$10.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-\mathrm{C}=\mathrm{O}-), 8.03-7.63(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.96(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-8), 7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-$ 10), $4.5\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}\right)$.
X. 10	$\begin{aligned} & 10.23(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}-\mathrm{C}=\mathrm{O}-), 7.77(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-10), 7.68(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-8), 4.05\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{2}\right), 3.44 \\ & \left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$
X. 19	$10.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-\mathrm{C}=\mathrm{O}-), 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-10), 7.66-7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-7), 4.05(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-$ CH_{2}), $3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
X. 26	$10.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-\mathrm{C}=\mathrm{O}-), 8.04(3 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.70-7.63(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.05$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}$),
X. 30	$10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-\mathrm{C}=\mathrm{O}-), 8.22(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-8), 8.03(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-10), 5.87\left(1 \mathrm{H}, \mathrm{m}, \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$, $5.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 4.0\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}\right)$,

Table 10 Mass spectral data of compounds (X)

Comp. X	m/z (abound \%)
X. 1	$\begin{aligned} & 387 / 389(100 / 49)\left(\mathrm{M}^{+}\right), 306(42)(\mathrm{M}-\mathrm{HBr}), 282 / 284(82.0 / 83.6)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right), 168 / 170 \\ & (61.0 / 60.5)\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrN}^{+}\right), 105(100)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right) . \end{aligned}$
X. 2	$\begin{aligned} & 401 / 403(100 / 51)\left(\mathrm{M}^{+}\right), 320(39)(\mathrm{M}-\mathrm{HBr}), 296 / 298(75.0 / 76.4)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right), 168 / 170 \\ & (61.0 / 60.5)\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{BrN}^{+}\right), 105(100)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right) . \end{aligned}$
X. 10	298/300 (100/64) (M^{+}), 262 (37) (M-HCl), 193/195 (71.0/73.5) ($\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$), 174/176 (59.0/58.5) ($\left.\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}^{+}\right), 105(100)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right)$.
X. 19	356 (100) (M^{+}), 105 (82.5) ($\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right)$, 90 (100) ($\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right)$.
X. 30	$\begin{aligned} & 508(100)\left(\mathrm{M}^{+}\right), 467(19.5)\left(\mathrm{M}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 437(41)\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}\right), 380(59)(\mathrm{M}- \\ & \left.\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right), 370(32)\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}\right), 328(57)\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}\right), 105(83.0)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right), 90(100) \\ & \left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{+}\right) . \end{aligned}$

IR X): $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3200 \mathrm{~cm}^{-1}\left(\mathrm{NH}\right.$ stretching), $1700 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ stretching) 1680,1620 , and $1490 \mathrm{~cm}^{-1}$ (quinazoline bands).

Pharmacological Tests

Adult albino mice of either sex weighing 20-25 gm. were used as experimental animals. Paracetamol (Sigma Chemical Co., St. Louis, MO, USA) and phenobarbitone sodium (Aldrich Chemical Co., St. Milwaukee, WI, USA) were used as reference drugs for analgesic and hypnotic actions. The test compounds as well Paracetamol were suspended in water by the aid of few drops of Tween-80 (Sigma) to produce 2% suspension. Phenobarbitone sodium was dissolved in water for injection containing a few drops of Tween- 80 to produce 2% solution. p-benzoquinone (Aldrich) was dissolved in water for injection containing a few drops of Tween- 80 to produce 0.02% solution and was used as writhing inducer.

A) Analgesic Action:

The analgesic action of some newly synthesized compound was determined using the writhing method on mice [34]. The mice were randomly arranged in groups each of 10 animals one group was kept as control. The animals of another group were given paracetamol subcutaneously in a dose of $30 \mathrm{mg} / \mathrm{kg}$ body weight. Mice of the other groups were blindly injected subcutaneously with test compounds in a dose of $150 \mathrm{mg} / \mathrm{kg}$ body weight. After 30 minutes, each animal of each group was injected with 0.25 ml of 0.02% aqueous solution of p-benzoquinone and was observed for writhing after $30,60,90,120$, and 180 minutes. Animals protected from writhing were recorded in each group and the analgesic potency of the test compounds was determined as percentage of protection against writhing. The results are presented in (Table 11).

Table 11 The analgesic effect of paracetamol and test compounds (III and X) in mice

Comp. No. III and X	Dose mg/kg		\% of mice showing abolished writhing					
		30	60	90	120	150	180	
	20	100	100	100	100	100	100	
Paracetamol								
(control)	150	80	80	80	80	80	80	
III.1	150	90	90	90	90	90	90	
III.2	150	90	90	90	90	90	90	
III.3	150	80	80	80	80	80	80	
III.4	150	90	90	90	90	90	90	
III.5	150	90	90	90	90	90	90	
III.6	150	100	100	100	100	100	100	
X.1	150	100	100	100	100	100	100	
X.2	150	100	100	100	100	100	100	
X.3	150	100	100	100	100	100	100	
X.4	150	100	100	100	100	100	100	
X.5	150	100	100	100	100	100	100	
X.6	150	100	100	100	100	100	100	
X.7	150	100	100	100	100	100	100	
X.8	150	100	100	100	100	100	100	
X.9	150	100	100	100	100	100	100	
X.10	150	100	100	100	100	100	100	
X.11	150	100	100	100	100	100	100	
X.12	150	100	100	100	100	100	100	
X.13	150	100	100	100	100	100	100	
X.14	150	100	100	100	100	100	100	
X.15	150	100	100	100	100	100	100	
X.16	150	100	100	100	100	100	100	
X.17	150	100	100	100	100	100	100	
X.18	150	100	100	100	100	100	100	
X.19	150	100	100	100	100	100	100	
X.20	150	100	100	100	100	100	100	
X.21	150	100	100	100	100	100	100	
X.22	150	100	100	100	100	100	100	
X.23	150	100	100	100	100	100	100	
X.24	150	100	100	100	100	100	100	
X.25	150	100	100	100	100	100	100	
X.26	150	100	100	100	100	100	100	
X.27	150	100	100	100	100	100	100	
X.28	150	100	100	100	100	100	100	
X.29	150	100	100	100	100	100	100	
X.30	150	100	100	100	100	100	100	
X.31	150	100	100	100	100	100	100	
X.32	150	100	100	100	100	100	100	
X.33	150	100	100	100	100	100	100	
X.34	150	100	100	100	100	100	100	
X.35	150	100	100	100	100	100	100	
X.36								

B) Hypnotic Action:

The hypnotic action of some newly synthesized compound was determined by the loss of righting reflex on mice [35].
The animals were randomly arranged in groups each of six animals. Each of three graded doses of each test
compound as well as phenobarbitone was blindly injected subcutaneously to a group of animals. The animals were observed until loss of righting reflex and for further three hours later. The animal was considered asleep, during the time of loss of righting reflex till recovery. Mice showing hypnosis were counted in each group and the \% hypnotic effect was calculated for each dose. The mean onset time, recovery time, \% hypnotic effect ED_{50} and relative potency of test compounds to phenobarbitone are presented in (Table 12).

Table 12 Hypnotic Activity of Phenobarbitone (P) and Test Compounds (IV) in mice

Comp.	$\begin{gathered} \text { Dose } \\ \mathbf{m g} / \mathbf{k} \\ \mathbf{g} \end{gathered}$	No. of animals injected	No. of animals showing hypnosis	Mean onset time (minute), \pm S.E	$\begin{gathered} \text { Recovery } \\ \text { time } \\ (\mathrm{min} .) \end{gathered}$	\% Hypnotic effect	$\begin{gathered} \text { ED50 } \\ \text { mg/kg } \end{gathered}$	Relative potency
IV. 1	100	6	3	25 ± 0.12	60	50	100	1.49
	150	6	5	25 ± 0.32	90	84		
	200	6	5	25 ± 0.42	90	100		
IV. 2	100	6	4	15 ± 0.16	120	67	65	2.87
	150	6	5	15 ± 0.23	120	84		
	200	6	6	15 ± 0.44	120	100		
IV. 3	100	6	4	15 ± 0.16	120	67	65	2.87
	150	6	5	15 ± 0.23	120	84		
	200	6	6	15 ± 0.44	120	100		
IV. 4	100	6	2	10 ± 0.22	120	33	64	3.07
	150	6	4	10 ± 0.32	120	67		
	200	6	6	10 ± 0.12	120	100		
IV. 5	100	6	4	20 ± 0.18	90	67	77	2.56
	150	6	4	20 ± 0.23	120	67		
	200	6	5	20 ± 0.47	120	84		
IV. 6	100	6	3	45 ± 0.12	90	50	100	1.95
	150	6	4	45 ± 0.32	90	67		
	200	6	5	45 ± 1.5	120	84		
IV. 7	100	6	3	30 ± 0.18	30	50	100	1.65
	150	6	5	30 ± 0.25	60	84		
	200	6	5	30 ± 0.27	90	84		
IV. 8	100	6	3	35 ± 0.18	60	16	139	1.00
	150	6	4	35 ± 0.32	90	67		
	200	6	5	35 ± 0.42	90	84		
IV. 9	100	6	1	35 ± 0.12	60	16	139	1.00
	150	6	4	35 ± 0.36	60	67		
	200	6	5	35 ± 0.58	90	84		
IV. 10	100	6	4	20 ± 0.18	90	67	77	2.56
	150	6	4	20 ± 0.23	120	67		
	200	6	5	20 ± 0.47	120	84		
IV. 11	100	6	3	25 ± 0.12	60	50	100	1.49
	150	6	5	25 ± 0.32	90	84		
	200	6	5	25 ± 0.42	90	100		
IV. 12	100	6	3	45 ± 0.12	90	50	100	1.95
	150	6	4	45 ± 0.32	90	67		
	200	6	5	45 ± 1.5	120	84		
IV. 13	100	6	1	40 ± 0.23	30	16	150	1.02
	150	6	3	40 ± 0.28	30	50		
	200	6	3	40 ± 0.49	30	50		
IV. 14	100	6	4	20 ± 0.18	90	67	77	2.56
	150	6	4	20 ± 0.23	120	67		
	200	6	5	20 ± 0.47	120	84		
IV. 15	100	6	2	10 ± 0.22	120	33	64	3.07
	150	6	4	10 ± 0.32	120	67		
	200	6	6	10 ± 0.12	120	100		
IV. 16	100	6	1	15 ± 0.23	90	16	70	2.26

	150	6	4	15 ± 0.18	120	67		
	200	6	6	15 ± 0.12	180	100		
	100	6	1	35 ± 0.12	60	16		
IV. 17	150	6	4	35 ± 0.36	60	67	139	1.00
	200	6	5	35 ± 0.58	90	84		
	100	6	3	30 ± 0.18	30	50		
IV. 18	150	6	5	30 ± 0.25	60	84	100	1.65
	200	6	5	30 ± 0.27	90	84		
	50	6	1	25 ± 0.48	40	16		
P	100	6	3	25 ± 0.27	60	50	100	1.00
	150	6	6	25 ± 0.35	90	100		

Results and Discussion

Many substituted 4H-3,1-benzoxazin-4-ones (II) were obtained by refluxing the appropriate anthranilic acid (I) with acetic and propionic anhydrides. Condensation of the different benzoxazinones (II) with anthranilamide in refluxing glacial acetic acid containing small quantity of fused sodium acetate afforded the new quinazolinoquinazolinones (III) (Table 1). The structures of such new compounds were confirmed by both elemental and spectral analyses. The IR spectra of (III) in KBr showed carbonyl stretching around $1690-1700 \mathrm{~cm}^{-1}$ and the three indicative bands of the quinazoline ring system at 1600,1560 and $1480 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra of (III) in DMSO- d_{6}, taking (III.3) as a model example, showed two fine doublets each of one proton, at 8.24 and $8.05 \mathrm{ppm}(\mathrm{H}-9$ and $\mathrm{H}-11$ respectively), two course doublets each of one proton at 7.64 and 7.31 ppm , ($\mathrm{H}-1$ and $\mathrm{H}-4$ respectively), and two triplets each of one proton at 7.76 and $7.00 \mathrm{ppm}(\mathrm{H}-3$ and $\mathrm{H}-2$ respectively). The methyl group at position- 6 revealed as sharp singlet of three protons at 2.12 ppm . The EI mass spectra of (III) are characterized by the presence of prominent molecular ion peaks representing the base peaks in some cases. Loss of the C-6 substituent, CN, CO, and R-CN were the most common fragmentation processes of such compound. The 6- methyl derivatives of (III) were allowed to react with certain aldehydes, namely acetaldehyde, benzaldehyde, 2-chlorobenzaldehyde, 4-chlorobenzaldehyde, 2,4-dichlorobenzaldehyde, 2,6-dichlorobenzaldehyde, 4-methoxybenzaldehyde, 2,4-dimethoxybenz-aldehyde, 4hydroxybenzaldehyde whereby, the corresponding 6-vinyl derivatives (IV) were obtained (Table 4). The structures of (IV) were confirmed by both elemental and spectral analyses. The IR spectra of (IV) in KBr showed the carbonyl stretching at $1680 \mathrm{~cm}^{-1}$ in addition to the other double bond stretching at $1610,1580,1560,1500$, and $1480 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra of (IV) in DMSO-d ${ }_{6}$, e.g. (IV.4) is characterized by the presence of two doublets each of one proton at 7.10 and 6.50 ppm due to vinyl protons. The rest aromatic protons revealed multiplet in the region of $8.20-7.0 \mathrm{ppm}$. Also the ${ }^{1} \mathrm{H}$ NMR spectrum of compound (IV-2) is characterized by the presence of two doublets at 8.10 ppm and 7.20 ppm , (vinyl protons). The aromatic protons appear as multiplet in the region of 8.06-7.0 ppm. The EI mass spectra of (IV) showed the molecular ion peaks. The base peaks were produced in most cases by loss of the 6-vinyl moiety. Loss of CO, CN and $\mathrm{C}_{6} \mathrm{H}_{4}$ were also observed. In addition, alkylation of certain anthranilic acids (I) with various alkyl halides in the presence of sodium carbonate afforded several N -alkylanthranilic acids (V) which were fused with urea to produce the corresponding $2,4(1 \mathrm{H}, 3 \mathrm{H})$-quinazolinediones (VI). Treatment of (VI) with KOH in absolute ethanol yielded the respective potassium salts (VII) which on heating with ethyl chloroacetate in DMF produce the corresponding esters (VIII). Hydrazinolysis of (VIII) gave the hydrazides (IX). The structures of the hydrazides were confirmed by elemental and spectral analyses. The IR spectra of (IX) in KBr showed strong absorption band near $3200 \mathrm{~cm}^{-1}$, due to NH stretching, and two sharp strong bands at 1710 and $1665 \mathrm{~cm}^{-1}$, due to C-4 carbonyl, amide- I-band and C-2 carbonyl streatchings. The amide -II- band as well as skeletal vibrations of quinazoline nucleus revealed absorption bands at 1610,1550 , and $1485 \mathrm{~cm}^{-1}$. Refluxing hydrazides (IX) in glacial acetic acid containing fused sodium acetate afforded the new 1,2,4-triazino[4,3-c]quinazolines (X). The reaction was observed to proceed via an intramolecular cyclodehydration. It is well known that the C-4 of the quinazoline ring system is more electrophilic than the C-2 which is flanked by two nitrogens [36]. This difference in electrophilicity between these two carbons may explain the preferential attack of the terminal nitrogen of the hydrazide moiety on the C-4 to yield compounds (\mathbf{X}). The structures of (\mathbf{X}) were confirmed by elemental and spectral analyses. The IR spectra of (\mathbf{X}) in KBr showed strong bands at $3200 \mathrm{~cm}-1(\mathrm{NH}$ stretching), at $1700 \mathrm{~cm}-1(\mathrm{C}=\mathrm{O}$ stretching $)$ and at 1680,1620 , and $1490 \mathrm{~cm}^{-1}$ (quinazoline bands). The ${ }^{1} \mathrm{H}$ NMR spectra of (X) in DMSO d-6, taking (X.1) as a model example revealed a downfield singlet of one proton at $10.40 \mathrm{ppm}(\mathrm{NH}-\mathrm{C}=\mathrm{O})$, singlet of two proton at $4.0 \mathrm{ppm}\left(-\mathrm{CH}_{2}\right.$ protons of triazino ring), singlet of three protons at 3.44 ppm due to $\left(\mathrm{CH}_{3}\right.$ protons). The aromatic protons of the fused benzene
ring displayed two doublets each of one proton at $7.96,7.89 \mathrm{ppm}(\mathrm{H}-8$ and $\mathrm{H}-10$ respectively). The EI mass spectra of (\mathbf{X}) showed molecular ion peaks in most cases. Loss of the 6 -substituent is common feature in this series. A preliminary, double-blind and randomized study was undertaken to evaluate the non-narcotic analgesic activity of (III) and (X) using paracetamol as reference drug the hypnotic action of (IV) using phenobarbitone as a reference compound. Loss of righting reflex was taken as a parameter for evaluation of the hypnotic activity of the test compounds; while protection of the experimental animals against p -benzoquinone induced writhing was adopted for estimation of the analgesic activity of such compounds. The results presented in (Table 11) revealed that some triazinoquinazolines (i.e. X.1-32) showed an appreciable analgesic activity compared with paracetamol. These derivatives exhibited 100% protection against p-benzoquinone induced writhing in mice at dose level of $150 \mathrm{mg} / \mathrm{kg}$. The other quinazolinoquinazolines (III) showed much less analgesic effect. On the other hand, the results presented in (Table 12) revealed that compounds (IV) possess a marked hypnotic activity compared with phenobarbitone. The ED50 of phenobarbitone was $100 \mathrm{mg} / \mathrm{kg}$ and its onset time was 25 minutes. Careful inspection of data (Table 12) showed that compounds (IV.8, IV. 9 and IV.17) exhibited a hypnotic action similar to that of phenobarbitone. The other compounds are more active than phenobarbitone Introduction of Iodine at position 10 and 8 greatly increased the potency, significantly decreased the onset time and considerably increased the duration of action. Replacing the CH_{3} group of the vinyl moiety by a phenyl or 2-chlorophenyl group, 4-chlorophenyl, 2,4-dichlorophenyl, 2,6dichlorophenyl, 4-methox yphenyl, slightly increased both onset time and potency.

Computational drug design:

1. Analgesic anti-inflammatory:

Docking studies were carried out to examine the analgesic and anti-inflammatory effect of compounds (III.1-6 and X.1-36).

Preparation of the target protein:

The protein target needs to be prepared and modeled according to the format requirements of the docking algorithms used. Thus the required protein was downloaded from protein data bank (PDB) (code 1RO6) using Discovery Studio 2.5 software. Water molecules were removed from downloaded protein. Crystallographic disorders and unfilled valence atoms were corrected using alternate conformations and valence monitor options. Protein was subjected to energy minimization by applying CHARMM force fields for charge, and MMFF94 force field for partial charge. Inflexibility of structure is obtained by creating fixed atom constraint. The binding site of the protein was defined and prepared for docking.

Tested compounds preparation:

The designed compounds 2D structures were sketched using ChemBioDraw Ultra 14.0 and saved in MDL-SDfile format. SDfile opened, 3D structures were protonated and energy minimized by applying CHARMM force fields for charge, and MMFF94 force field for partial charge, then prepared for docking by optimization of the parameters.

Results and Discussion:

The obtained results indicated that all studied ligands have similar position and orientation inside the putative binding site of the phosphodiesterase4 protein. The selected compounds (X.35, X. 36 and $\mathbf{X . 2 7}$) showed good binding energies ranging from -40 to $-42.11 \mathrm{kcal} / \mathrm{mol}$. The proposed binding mode of compound (X.35) (affinity value of -40 $\mathrm{kcal} / \mathrm{mol}$ and 2 H -bonds) is shown in (Figure 5). One carbonyl group formed a hydrogen bond with a distance of 1.87 A° with Asn 395 . The basic nitrogen of the ring formed a further hydrogen bond with a distance of $2.09 \mathrm{~A}^{\circ}$ with the acidic proton of Gln 443 . Furthermore, the compound formed a Pi-Pi interaction with Phe 446 and a Pi-sigma interaction with Ile410. The proposed binding mode of compound (X.36) (affinity value of $-42.08 \mathrm{kcal} / \mathrm{mol}$ and 3 H bonds) is shown in (Figure 6). One carbonyl group formed a hydrogen bond with a distance of $1.95 \mathrm{~A}^{\circ}$ with Asn395. The basic nitrogen of the ring formed a further hydrogen bond with a distance of $2.05 \mathrm{~A}^{\circ}$ with the acidic proton of Gln443 and the amidic proton formed a hydrogen bond with a distance of $2.40 \mathrm{~A}^{\circ}$ with Gln 443 . Furthermore, the compound formed a Pi-Pi interaction with Phe 446 and a Pi-sigma interaction with Ile 410 . The proposed binding mode of compound ($\mathbf{X . 2 7}$) (affinity value of $-42.11 \mathrm{kcal} / \mathrm{mol}$ and 3 H -bonds) is shown in (Figure 7). One carbonyl group formed a hydrogen bond with a distance of $1.98 \mathrm{~A}^{\circ}$ with Asn395. The basic nitrogen of the ring formed a further hydrogen bond with a distance of $2.04 \mathrm{~A}^{\circ}$ with the acidic proton of Gln 443 and the amidic proton formed a hydrogen bond with a distance of $2.41 \mathrm{~A}^{\circ}$ with Gln 443 . Furthermore, the compound formed a $\mathrm{Pi}-\mathrm{Pi}$ interaction with Phe446 and a Pi-sigma interaction with Ile 410

Table $13 \Delta \mathrm{G}$ for ligands III.1-6 and X.1-36

Comp.	$\Delta \mathbf{G}$	Comp.	$\Delta \mathbf{G}$	Comp.	$\Delta \mathbf{G}$
III.1	-23.43	X.9	-26.55	X.23	-23.33
III.2	-31.07	X.10	-24.44	X.24	-27.22
III.3	-22.23	X.11	-35.18	X.25	-22.96
III.4	-28.54	X.12	-22.09	X.26	-30.10
III.5	-21.22	X.13	-25.65	X.27	-42.11
III.6	-30.04	X.14	-31.33	X.28	-39.43
X.1	-31.17	X.15	-30.09	X.29	-29.00
X.2	-30.32	X.16	-24.09	X.30	-23.45
X.3	-22.56	X.17	-30.00	X.31	-39.10
X.4	-21.22	X.18	-25.43	X.32	-28.98
X.5	-33.47	X.19	-22.23	X.33	-31.48
X.6	-3444	X.20	-32.11	X.34	-33.05
X.7	-31.33	X.21	-26.39	X35	-40.00
X.8	-27.54	X.22	-26.39	X36	-42.08

Figure 5 Binding mode of compound X. 35

Figure 6 Binding mode of compound X. 36

Figure 7 Binding mode of compound X. 27

2. Sedative Hypnotic:

Docking studies were carried out to examine the effect of compounds (IV.1-18) on the GABA-A receptor.

Preparation of the target protein:

The protein target needs to be prepared and modeled according to the format requirements of the docking algorithms used. Thus the required protein was downloaded from protein data bank (PDB) (code 4COF) using Discovery Studio 2.5 software.

Table $14 \Delta \mathrm{G}$ for ligands IV.1-18

Comp.	$\Delta \mathbf{G}$	Comp.	$\Delta \mathbf{G}$	Comp.	$\Delta \mathbf{G}$
IV.1	-22.05	IV.7	-21.34	IV.13	-22.07
IV.2	-22.29	IV.8	-23.30	IV.14	-22.05
IV.3	-27.01	IV.9	-23.18	IV.15	-18.20
IV.4	-25.24	IV.10	-21.98	IV.16	-28.20
IV.5	-20.22	IV.11	-20.03	IV.17	-27.61
IV.6	-21.11	IV.12	-25.18	IV.18	-21.12

Figure 8: Binding mode of compound IV. 16

Figure 9 Binding mode of compound IV. 17

Results and Discussion:

The obtained results indicated that all studied ligands have similar position and orientation inside the putative binding site of GABA-A receptor. The selected compounds (IV. 16 and IV.17) showed good binding energies ranging from 28.20 to $-27.61 \mathrm{kcal} / \mathrm{mol}$. The proposed binding mode of compound (IV.16) (affinity value of $-28.20 \mathrm{kcal} / \mathrm{mol}$ and 2 H -bonds) is shown in (Figure 8). One carbonyl group formed a hydrogen bond with a distance of $2.01 \mathrm{~A}^{\circ}$ with Tyr157. The O atom of the methoxy group formed a further hydrogen bond with a distance of $2.31 \mathrm{~A}^{\circ}$ with the acidic proton of Aln201. Furthermore, the compound formed a Pi-Pi interaction with Phe200. The proposed binding mode of compound (IV.17) (affinity value of $-27.61 \mathrm{kcal} / \mathrm{mol}$ and 2 H -bonds) is shown in (Figure 9). One carbonyl group formed a hydrogen bond with a distance of $2.21 \mathrm{~A}^{\circ}$ with $\mathrm{Arg207}$. The O atom of the methoxy group formed a further hydrogen bond with a distance of $2.22 \mathrm{~A}^{\circ}$ with the acidic proton of Tyr157. Furthermore, the compound formed a PiPi interaction with Phe200.

References

[1] Abondi, F.,Gordon, S., Morton, J. and Williams, J. H., J. Org. Chem., 1952, 17, 11-16.
[2] Cohen, E., Klarbery, B. and Vaughan, J. R., J. Am. Chem. Soc., 1960, 82, 2731-2739.
[3] Knoll, J., Meszaros, Z., Szentmiklosi, P. and Furst, S., Arzneim, Forsch./Drug Res., 1971, 21, 717-724.
[4] Knoll, J., Gyires, K. and Meszaros, Z., Arzneim, Forsch./Drug Res., 1979, 29(5), 766-773.
[5] Hermeez, I., Meszaros, Z., Vasvari-debreczy, L., Horvath, A.,Virag, S., and Sipos, J., Arzneim, Forsch./Drug Res., 1979, 29(12), 1833-1835.
[6] Bansi, L., Dormauer, H., Bhattacharya, B. K., Dohadwalla, A., H. N., and De Souza, N. J., (Hocest A.-G.), F. R., 2, 470, 130, Chem. Abstr. 1982, 96(1), 6753b.
[7] Doria, G., Passarotti, G., Lovisolo, P. P., and Buttinoni, A. (Framitalia Carlo Erba S.P.A.), Ger.Offen, DE, 3,315,299, Chem. Abstr., 1984, 100(15), 121098e.
[8] Tilley, J. W. (Hoffmann La-Roche, F.und Co. A.-G.) Eur. Pat., Appl. Ep.94, 080, Chem Abstr. 1984, 100(21), 174846d.
[9] Ebeid, M., Y., Hassanein, H., H., Obidan, N., N., and Hassan, A., B., Egypt J. Pharm. Sci., 1989, 30(1-4), 193205, Ebeid, M., Y., Hassanein, H., H., Riad M., V., and Hassan, A., B., Ibid 1990, 31(1-4), 267-275 and Ebeid, M., Y., Gad Z., I., El-Sayed N., M., Ahmed, Ammed, El-S. and El-Sayeh, B., Ibid, 32(3-4), 441-445.
[10] El-Azab, A. S. and K. E. ElTahir, Bioorg. Med. Chem. Lett. 2012, 22, 327-333.
[11] Veerachamy, A., et al. Biol. Pharm. Bull. 2003, 26(4) 557-559.
[12] Byju, K. and Jayalakshmi, B. IJAPBC, 2015, 4(1), 238-246.
[13] Mosaad, S., M., et al. Acta Poloniae Pharmaceutica Drug Research, 2011 68(5) 665-675.
[14] Byju, et al., Int. J. Res. Pharm. Sci. 2014, 4(3), 12-17.
[15] Alagarsamy, V., Bioorganic \& Medicinal Chemistry, 2007, 15, 235-241.
[16] Amin, A. H., Mehta, D. R. and Samarth, S., S., Prog. Drug Res., 1970, 14, 218-226.
[17] Johne, S., Ibid, 1982, 26, 259-265.
[18] El-Azab, A. S. and K. E. ElTahir, Med. Chem. Res., 2012, 21, 3785-3796.
[19] Donner, E. J., et al., NeuroRX, 2006, 3, 170-180.
[20] Stefan, H. and Feuerstein, T., Pharmacol. Ther., 2007 113, 165-183.
[21] Heliman W., P., and Gullo, J., M., (Diamond Sharmrock Corp.) PCT Int. Appl. WO 83 00, 864, Chem. Abstr., 1983, 99, 105258u.
[22] Bogert, M., T., and Beal, G., D., J. Am. Chem. Soc. 1924, 46, 1294 and Bogert, M., T., and Clark, H., Ibid 1924, 46, 1294-1301.
[23] Hisano, T., Ichikawa, A., Nakagawa, A., and Tsuji, M., Chem. Pharm. Bull. 1972, Jpn., 20, 2575-2581.
[24] Kumar, P., Nath, C., Bhargava, K., P., and Shanker K., Pharmazie 1982, 37, (11), 802-809.
[25] Wheeler, H., L., and Outes, W., M., J. Am. Chem. Soc. 1910, 32, 771-776.
[26] Endicott, M., M., Alden, B., B., and Sherrill, M., I., Ibid 1946, 68, 1303-1308.
[27] Baker B., R., Schaub, R., E., Joseph, J., P., and McEvoy, F., J., J. Org. Chem.1952, 17, 149-155.
[28] Klemme, J. and Hunter, H., J. Org. Chem., 1940, 5, 227-233.
[29] Ossman, A-R., E-N., Osman, A-G., N., and El-Helby, A-G., A., Bull. Pharm. Sci. Assiut Univer. 1986, 9(1), 105-115.
[30] Aziza, M., A-k., Salama, F., M., Amin, M., A., Ibrahim, M., K., and El-Helby, A-G., A., Az. J. Pharm. Sci., 1992, 9, 79-91.
[31] Ossman, A-R., E-N., Barakat, S., E-S., Arzneimitt- Forsch/Drug Res. 1994, 44(11), 915-926.
[32] Okun, R., Lidden S., C., and Lasagna, L., J. Pharmacol. Exp. Ther. 1963, 139, 107-114.
[33] Turner R., A., "Screening Methods in Pharmacology" Academic Press, London, New York, 1965, vol. 1, pp. 69.
[34] Culbertson, H., Decius, J. C. and Christensen B., E., J. Am. Chem. Soc. 1952, 74, 4834-4841.
[35] Barakat, S., E.-S., Az. Pharm. Sci. 1994, 31, 25-36.
[36] Armarego, W. L. F., "Advan. Heterocyclic Chem." Academic Press. 1963, 1, 270-278.
© 2016, by the Authors. The articles published from this journal are distributed to the public under "Creative Commons Attribution License" (http://creativecommons.org/licenses/by/3.0/). Therefore, upon proper citation of the original work, all the articles can be used without any restriction or can be distributed in any medium in any form.

Publication History
Received $10^{\text {th }}$ Jan 2016
Revised $\quad 25^{\text {th }}$ Jan 2016
Accepted $12^{\text {th }}$ Feb 2016
Online $\quad 30^{\text {th }}$ Mar 2016

