Research Article

Cyclic Voltammetric Studies on Ethoxylation of Benzyl Alcohol

S. Antony Sakthi^{*1}, A. Leostandly¹ and M. S. Selva Kumar²

¹St. Joseph's College (Autonomous), Trichirappali, Tamil Nadu, India. ²St. Xavier's College, Palayankottai, Tirunelveli, Tamil Nadu, India.

Abstract	change in P ^H , working electrode and scan		
	rate variation. It is observed that the		
Benzyl alcohol is an important ingredient in	ethoxylation of benzyl alcohol is diffusion		
chemical products used in the construction	controlled at all aforesaid conditions. It is		
industry. The present work is done on the	also found out that benzyl alcohol is not		
cyclic voltammetric studies on ethoxylation	forming polymers with any of the working		
of benzyl alcohol. Cyclic voltammograms are	electrode under investigation.		
recorded by varying the P ^H , working			
electrode and scan rate and multiple scan	*Correspondence		
studies have also been done. The system is	S. Antony Sakthi,		
observed to show variations in the working	Assistant Professor of Chemistry,		
potentials (anodic peak voltage) with the	Email: santonysakthi@gmail.com		

Keywords: Cyclic voltammetry, benzyl alcohol, working electrode, ethoxylation, electroanalysis.

1. Introduction

Benzyl alcohol (BA) is a colourless liquid with a sharp burning taste and slight odor. Benzyl alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent and viscosity- decreasing agent.¹ It is used as local anesthetic, pharmaceutical aid, and in perfumery². Many chemical reactions of (BA) have been studied extensively. Many electrochemical studies of BA such as hydroxylation³, halogenations⁴, cyanation⁵ and alkoxylation⁶ have been reported. Only a few studies on alkoxylation of BA are found in the literature. Recently the electrochemical and analytical studies on ethoxylation⁷ of various mono substituted aromatic compounds have been examined and reviewed.⁸

2. Materials and Methods

2.1. Apparatus

Cyclic voltammogramms were recorded with potentiostat CH 10 (Sinsil international) interfaced to 663VA stand (Metrohm) and SyncMaster B 1930 computer. A three electrode configuration was used with platinum /glassy carbon electrode as the working electrode, a silver-silver chloride reference electrode and a platinum wire as the auxiliary electrode. The working electrode was pretreated by polishing it with an alumina-water slurry followed by washing in an ultrasonic path.

2.2. Reagents and solutions

All reagents were of analytical reagent grade and ultra pure water was used throughout the cyclic voltammetric analysis. 0.001M Benzyl alcohol, 1M $H_2SO_4/KOH/KCl$, 0.5M Ethanol were prepared freshly. The P^H of the different reaction mixtures measured with pen type P^H meter. The solutions were stored in a light protected cool location.

2.3. Methodology

The three electrode system with platinum or glassy carbon electrode as the working electrode, platinum wire as the auxiliary electrode and Ag-AgCl electrode as the reference electrode was constructed in an divided H-cell. In order to change the P^{H} of the system 1M solutions of H₂SO₄/KOH/KCl were taken. These solutions were also working as the sources of supporting electrolytes. Then the cyclic voltammogram was recorded with different scan rates, different working electrodes and different P^{H} conditions. To arrive at an idea about the polymerization of BA on working electrode, multiple scan cyclic voltammogram was also recorded.

3. Results and Discussion

3.1. Substrate and P^H variation studies

Figure 3.1 (a) Cyclic voltammogram obtained for benzyl alcohol (0.001M) with ethanol (0.1M) in basic medium (KOH, 1M) at Pt anode for 100mVs⁻¹

Figure 3.1 (b) Cyclic voltammogram obtained for benzyl alcohol (0.001M) with ethanol (0.1M) in neutral medium (KCl, 1M) at Pt anode for 100mVs⁻¹

Chemical Science Review and Letters

The well defined anodic peak potentials seen in the cyclic voltammogram show that the substrate BA is susceptible for electrochemical ethoxylation. The data obtained from the cyclic voltammogram can be used to carry out electrochemical synthesis and for the evaluation of electron transfer kinetics.⁹

3.2. Electrode variation studies

Figure 3.2 (a) Cyclic voltammogram for 10^{-3} M, Benzyl alcohol in pH =12, hydro-alcoholic solution at glassy carbon electrode

Figure 3.2 (b) Cyclic voltammogram for 10⁻³ M, Benzyl alcohol in pH =7, hydro-alcoholic solution at glassy carbon electrode

Medium	Platinum as working electrode	Glassy carbon as working electrode	
Acidic	1.8	1.00	
Neutral	1.3	-	
Basic	1.2	-	

Table 1 Comparision of cyclic voltammetric potentials for Benzyl alcohol

The electrode variation studies are carried out by replacing platinum by glassy carbon electrode. It is found that the anodic peak was observed in acidic medium only on glassy carbon electrode. But on platinum, all three conditions the anodic peaks are observed.

3.3. Scan rate variation studies

Cyclic voltammograms with variable sweep rates in the range of 100 to500mV/second for all the above systems were taken and the results are tabulated below.

Table 2 Cyclic voltammograms with variable sweep rates in the range of 100 to500mV/second

Parameters	Scan rate v (mV/s)						
	100	200	300	400	500		
ν ^{1/2}	10	14.14	17.32	20	22.36		
Ip (µA)	135.2	208.3	265.0	298.7	336.3		
Ep (v)	-0.856	-0.831	-0.810	-0.802	-0.785		

3.3 (a), (b), (c) & (d) Cyclic voltommograms recorded for Benzyl alcohol in basic medium at different scan rates.

The plot drawn between the peak current and the square root of the scan rate produces a line which does not pass through the origin. This shows that the process is irreversible.¹⁰⁻¹¹

3.4. Multiple scan studies

The multiple scan rate studies of ethoxylation of benzyl alcohol by varying p^{H} , working electrode revealed that there is no polymer formation on the working electrode during electrolysis. The monolayer of the multiple cyclic voltammograms confirms the absence of polymer formation.

Conclusion

In the present study, the electro analytical studies on ethoxylation of benzyl alcohol are carried out. The cyclic voltammograms of benzyl alcohol were recorded by changing the conditions like p^{H} , working electrode and scan rate. The following conclusions are arrived from the experimental observation.

- Benzyl alcohol is susceptible for anodic ethoxylation.
- Anodic peak potential changes with change in p^H, hence variety of products can be produced by changing the p^H.
- Anodic peak potential changes with change in working electrode. Hence change in electrode changes the reaction mechanism.
- Multiple scan studies indicate that there is no polymer formation on the working electrode.
- Cyclic voltammograms recorded at various scan rate indicate that the process is diffusion controlled, since the current-frequency curve gives a straight line in the desired working potential.

References

- [1] Benzyl alcohol chemicalland21.com
- [2] The Merk Index: An Enclopedia of Chemicals, Drugs, and Biological (11th ed.), Merck, 1989, ISBN 091191028X, 1138.
- [3] Woodward, R.B. (1955) Organic Synthesis (Horning, E.C.,ed.) vol.3, p.453, J.Wiley and Sons Ltd, New York.
- [4] N.L. Weinberg, Technique of Electroorganic Synthesis, Part 1, (ed . N.L. Weinberg), Wiley-Interscience, New York, p. 12 (1974)
- [5] K. Yoshida, The Chemistry of Functional Groups, Supplement C (ed. S. Patai et al.), John Wiley & Sons, pg.221 (1982)
- [6] C.K. Mann, Electroanalytical Chemistry, (ed. A.J. Bard), Marcel Dekker, New York, Vol. 3, 57-134 (1969)
- [7] B. Speiser, Electroanalytical Chemistry, (ed.A.J. Bard and I.Rubinstein), Marcel Dekker, New York, Vol.19, Pg. 1-108 (1996)
- [8] J.Y. Becker, The Chemistry of Functional Groups, Supplement D (ed. S.Patai, et al.), John Wiley & Sons, p.203 (1983)
- [9] R. Parsons, Modern Aspects of Electrochemistry (ed. J.O'M. Bockris), Vol.1, Butterworths, London, p.103 (1954)
- [10] S.Swann Jr., Technique of Organic Chemistry, Vol.11, Interscience, New York, p.410 (1956)
- [11] H.Lund and P. Iverson, Organic Electrochemistry, (ed. M.M.Baizer), Marcel Deckker, New York, P.200, (1973)

© 2014, by the Authors. The articles published from this journal are distributed to the public under "**Creative Commons Attribution License**" (http://creativecommons.org/licenses/by/3.0/). Therefore, upon proper citation of the original work, all the articles can be used without any restriction or can be distributed in any medium in any form.

Publication HistoryReceived09th Dec 2013Revised16th Dec 2013Accepted24th Jan 2014Online05th Feb 2014