Preparation and characterization of Ruthenium(III), Iron(III), Chromium(III) Tetrachloride, 1,10- phenanthrolinium salts [PhenHMCI₄]; M=Ru(III), Fe(III), Cr(III): Contribution to the study of the mechanism of action of the gold therapeutic complexes

M. El Amane*, H. EL Hamdani, Y. Kennouche, M. Bouhdada, and ELM. Ahmami

Equipe Métallation, complexes moléculaires et applications, Laboratoire des substances naturelles et de chimie moléculaire, Université Moulay Ismail, Faculté des sciences, Meknès, BP 11201 Zitoune, 50000 Morocco

Abstract

Ruthenium III, Chromium III, and Iron III tetrachloride 1,10-phenanthrolinium salts [phenHMCl₄] M=Ru(III), Fe(III), Cr(III) are synthesized by direct reaction with 1,10-phenanthroline in HCl, or 1,10-phenanthrolinium chloride with trivalent metal chloride at room temperature. In order to characterize 1,10-phenanthroline, 1,10phenanthrolinium chloride and 1,10-phenanthrolinium salts by infrared, ¹H; ¹³C NMR, DEPT, UV-Visible and molar conductivity, suggest that 1,10-phenanthroline is protonated by one nitrogen atom and form 1,10-phenanthrolinium metal tetrachloride salts with the type of electrolyte 1:1.

Author: M. El Amane Email: lelamane@gmail.com

Keywords: 1,10 phenanthroline, 1,10phenanthrolinium, metal tetrachloride, Iron III, Chromium III, Ruthénium III, infrared, ¹H, ¹³C NMR, DEPT, UV-Visible, molar conductivity.

Introduction

Cisplatin is an anticancer agent used [1], for the treatment of testicular, ovarian, head, neck and germ cell tumors. However, the optimal use of this drug is limited due to its dose limiting nephrotoxicity. The new platinum compounds likes carboplatin and oxaliplatin are found to possess comparatively very arrow therapeutic index, and also it has limited clinical utility due to drug resistance and side effects. Hence it is necessary to look for more effective and less toxic than other metal-based anticancer agents.

In an effort to discover potential alternatives to the anticancer drug cis-platinum(II) the synthesis of gold(III) [2, 9] disubstituted phenanthroline complexes $(1,10\text{-phen})AuCl_3$ was pursued, phenanthroline complexes with metals other then gold(III) exhibit cytotoxic proprieties and a range of phenanthroline complexes are significantly more active anti-cancer drugs then cisplatinium against selected cancer lines through inhibition of DNA synthesis, both intercalatrively and non-intercalatively.

The phenanthroline bipyridine are important ligands which form stable complexes to formula (MLn X_2), n= 1, 2, 3 ; L= phenanthroline or bipyridine; X=Cl, With transition metal ions. In recent years, considerable attention has been paid to studying the phenanthroline complexes through their role in catalysis, antitumor activities, solar energy and nanotechnology [2-4].

It has recently been found that gold drugs can have a different mechanism leading to cytotoxity in cancer cells with DNA binding. Cis-platinium [1, 5] typically binds to the DNA, which inhibits DNA repair, where as DNA binding of (1,10-phen)AuCl₃ complexes have been found to be variable and less frequent. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between all proliferation and intracellular iron concentrations suggest that iron deprivation strategies [6-8]. May be a mechanism involved in inhibiting tumor cell growth. Therefore, iron(III) complexes possessing (1,10-phen) [9,10]. The proton and/or metal occupies one the dominant positions in inorganic

Chemical Science Review and Letters

and bioinorganic chemistry playing an important role in ubiquitous proton and/or metal transfer reactions in coordination in charge and mass transport processes in membranes, in intracellular, in catalysis and biocatalysts. Protonation reactions of 1,10-phenanthroline in aqueous solutions have been studied, and it has reported that phenH⁺ were formed in pH =2-7. The solubility of the neutral species is low in water, but remarkably increases in inorganic solvents and also in aqueous organic mixtures [11].

[1,10-phen.HX.H₂O] X=Cl⁻,Br⁻ is isostructural crystallizes in the monoclinic system, space group P_{2.1}/b, the crystal structure analysis of compounds [1,10-phen.HX.H₂O]X=Cl⁻,Br⁻ indicate that is stable to bind proton and form protonated cation, which is stable by hydrogen bond interactions by OH---X and N-H---O in the solid state [12, 13]. Other studies demonstrate that coordination phenanthroline complexes is obtained by reacting of 1,10-phenanthroline and iron(III) chloride in equimolar quantities in methanol or by refluxing [FeCl₄]⁻ [RphenH]⁺ in DMSO solvent it's noted a similar protocol [10] for synthesis of [FeCl₄] [phenH]. We obtained a minor product where the phenanthroline was chelating to the iron III metal center.

Experimental Materials and Reagents

All the chemicals used were of E. Merck, DMF or Fluka FeCl₃,6H₂O; CrCl₃,6H₂O RuCl₃,3H₂O, 1,10-phenanthroline, HCl 10M.

The molar conductance values of the metal salts in DMSO (10^{-3} M solution) were measured at room temperature. Conductivity measurements were performed at 25 °C in DMSO using Hach HQ 430d flex. The infrared spectra were recorded on Shimadzu 470, UV-Visible spectra were measured in DMSO using Shimadzu UV-1800.¹H; ¹³C NMR were recorded on Bucker 300MHz in D₂O at room temperature.

General procedure for synthesis

The phenanthrolinium salts were obtained by reaction of the 1,10-phenanthroline with FeCl₃, $6H_2O$, CrCl₃, $6H_2O$ and RuCl₃, $3H_2O$, in the presence of 10M aqueous hydrochloric acid in hot aqueous solution in 1/1/1molar ratio, or the 1,10-phenanthroline in HCl,10M and trivalent metal chloride in equimolar ratio1/1/1. The some salts were filtered, washed with water, alcohol and finally with ether and dried in vacuum.

Results and Discussion

The molar conductance of these salts M=Fe(III),Cr(III),Ru(III), values is 70, 78 and 86 Ω^{-1} cm²mol⁻¹ respectively which indicates the ionic nature of the complexes and the type of electrolyte being 1 : 1. [14]

Infrared spectra

Infrared spectra data of 1,10-phenanthroline, 1,10-phenanthrolinium chloride and 1,10-phenanthrolinium metal salts (phenHMCl₄), M= Ru(III), Cr(III), Fe(III) was obtained from Shimadzu 470 in KBr, in the range (4000-400)cm⁻¹. The infrared spectrum of the 1,10-phenanthroline free was compared with that of 1,10-phenanthrolinium chloride, 1,10-phenanthrolinium metal salts. The 1,10-phenanthroline free is C_{2v} symmetry point group [16]. The 1,10-phenanthrolinium chloride molecule, where the infrared characteristics are explained by the Cs symmetry. The molecule is absently flat with a deviation from planarity less than 1,10-phenanthroline. The infrared data for the compounds, are summarized in **Table 1**.

A broad band at (3465-3450) cm⁻¹ may be assigned to vOH stretching vibration of water molecule upon protonation of 1,10-phenanthroline leads to the appearance of the new broad band at (3360-3300) cm⁻¹ corresponding to the NH stretching vibration of the protonated nitrogen. The 1,10-phenanthrolinium chloride participate in interaction of NH----OH type, where the water hydrate molecule form weak hydrogen bonds in the region (2100-1900) cm⁻¹. Shifting of bands in the region (1640-1300) cm⁻¹ of free (1,10-phen) is observed in the spectra. Undergo shifting to lower frequencies indicate the protonation of the 1,10-phenanthroline.

Shifting of bands in the region (1600-1300) cm⁻¹ is observed in the spectra of the salts [1,10-phen HMCl₄] H₂O; M = Ru(III), Cr(III), Fe(III). The three relatively strong bands in the range of (1620-1585) cm⁻¹ (**Figure 1** and **2**)

appeared and assigned as δNH , $\nu C=C$ stretching. These bands were combined with the bending vibration of the conjugated system.

Table 1 vibrations of the salts [MCl ₄][phenH	I]; M=Cr(III)	, Fe(III), Ru(III) in KBr
---	---------------	---------------------------

Dhan II O	mb an IIE a Cl	Dh on HC nCl	when IID. Cl	A agi gu a a 4
Phen,H ₂ O	phenHFeCl ₄	PhenHCrCl ₄	phenHRuCl ₄	Assignment
3456 m	3456 m	3450 m	3450 m	$\upsilon OH (H_2O)$
	3360	3350-3320	3300 m	υNH
3058 br	3056 w	3055 m	3045 w	υCH
1640m	1648m	1650m	1640m	$\delta \text{ OH} (\text{H}_2\text{O})$
1616m	1620m	1618s	1620s	δ ΝΗ
1586m	1594m	1595vs	1600e	υ C=C
1560m	1540m	1542s	1530m	υ C=C
1502s	1480m	1470w	1480w	υ C=C
	1453w	1450m	1456m	δСН
1425s	1424s	1424s	1420m	δСН
1400w	1370w	1370w	1376w	δ CH
1346m	1338m	1340w	1340w	δСН
	1226m			
1218w	1210w	1190w	1170w	δСН
1137m	1149	1140w	1140w	δСН
1035	1110m	1040w	1038w	δСН
988m	950w			δСН
854 vs	845vs	850vs	850m	δСН
780m	770m	780m	800 w	δСН
740vs	726 vs	720s	718m	δСН
724 m	726vs	720s	718m	δСН
710m	643w	650w	660w	δСН
695m				
625m	620w	620w	620w	δ (CCC)
610	557w	556w	560w	δ (CCC)
	525w	535w	540w	δ (CNC)
	500w	535w	510w	δ (CNC)
	480w	480 w	490w 480w	γ(CCC)
	464w	460w	460w	γ(CCC)
	444w	442w	445w 430w	γ(CCC)
	413m	410w	410w	γ(CCC)

A comparison with the spectral data of 1,10-phenanthroline free, indicates that the band at the (1620-1618) cm⁻¹ (figure 2) is attributed to the δ NH bending and two bands at the (1600-1530) cm⁻¹ range corresponding of the vC=C, are shifted to lower frequencies which indicate the involvement of both one of the nitrogen atoms to protonation [16].

The bands at 854 cm⁻¹, 740 cm⁻¹ and 625 cm⁻¹ attributed to out of plane hydrogen bending modes of the free 1,10 phenanthroline were shifted to the (850-845) cm⁻¹, (726-718) cm⁻¹ regions and at 620 cm⁻¹ for phenanthrolinium metal complexes [1,10 phenHMCl₄] H₂O; M= Fe(III), Cr(III), Ru(III) (Table 1). The change in the intensity of the peak at 780 cm⁻¹ is observed in all complexes and it is shifted to the lower frequency at 760 cm⁻¹ [16].

More information about the low frequency part in the spectra of the neutral 1,10-phenanthroline and phenanthrolinium salts in the (600-400) cm⁻¹ range corresponds to in plane and out of plane of CH deformation vibrations [17] (Table 1). All these bands are very weak in the spectra of 1,10-phenanthroline monohydrate and phenanthrolinum metal chloride. The changes of the relative intensities of the bands of the out-of-plane δ (CNC) introduced by the strong interaction of the phenanthrolinium with the tetragonal species MCl₄ M = Fe(III), Cr(III), Ru(III).

Figure 1 Infrared spectrum of the salt [FeCl₄][PhenH] in KBr

Figure 2 Infrared spectrum of the salt [CrCl₄][PhenH] in KBr

NMR spectra

The ¹H NMR spectrum (300 MHz, D₂O) of phenanthrolinium iron tetrachloride showed new signal at 4,72 ppm (S,1H, NH⁺) which was confirmed by comparison with δ NH⁺ (4,69 ppm) of the phenanthrolinium chloride in D₂O. The ¹H NMR spectrum of 1,10-phenanthroline in deuterated acetone showed eight doublets around the (9,14-9,71) ppm range with typical C_{2v} symmetry for the molecule.

These signals of proton Hd split into a doublet, in accordance with Cs symmetry (**Figure 3**). In comparison with the proton signal of the salts, the chemical shift differences are less than (0,07-0,45) ppm. These data are in accordance with dept spectral data of the salt (**Table 2**).

Figure 3 ¹HNMR spectrum of the salt [FeCl₄][PhenH] in DMSO

Table 2 ¹ H, ¹³ C Data of 1,10- phenanthroline and sal	lt [FeCl ₄][PhenH] in DMSO
---	--

	Ha	Hb	I	łc		Hd	Hd	\mathbf{NH}^+	
1,10phen	9,14	9,125	8,45	8,42	7,75	7,74	7,73	7,71	
1,10phenHFeCl ₄	9,21	9,20	8,88	8,85	8,2		8,1		4,72
	C _{1,2}	C ₃	,4	C ₅	6	C _{7,8}	C _{9,10}	C _{11,12}	
1,10phen	149,9	14	6,4	13	6	128,8	126,7	123,1	
1,10phenHFeCl ₄	147,1	14	2,15	13	6,7	129,6	127,5	125,7	

In the ¹³C NMR spectrum of phenanthrolinium iron tetrachloride (**Figure 4**), six signals are clustered around the (125-147) ppm and (123-149) ppm regions for 1,10 phenanthrolinium salts and 1,10-phenanthrolinium chloride respectively, with typical downfield shifts for carbons according to their positions and proximity to the electronegative nitrogen atoms, carbon nuclei ortho and para to the electronegative nitrogen being more deshielded [16]. Dept spectrum of phenanthrolinium iron tetrachloride has further supported the proposal indicating the exact position of the carbon chains.

Electronic Spectra

The UV-Visible spectra of the 1,10-phenanthroline, 1,10-phenanthrolinium chloride, and phenanthrolinium salts have been recorded in the (200-600) nm range. Upon protonation, the absorption bands attributed to $\pi - \pi$ * transitions were found to be shifted to higher energy regions compared to free 1,10-phenanthroline, in addition to apparance of new bands at longer wavelength (310-354) nm range may be assigned to charge transfer transitions (**Figure 5**), (**Table 3**). The similarity betwen UV-Visible absorption spectra iron(III) and gold(III) possessing protonated disubstitued methyl, sec butyl 1,10-phenanthrolinium was observed [5,14]. This generally confirms that the phenanthrolinium interacts with tetra chloride metal ion charge cotranfert.

Figure 5 Electronic spectrum of the salts[MCl₄][PhenH] M= Cr(III),Fe(III),Ru(III) and free ligand in DMSO

Conclusion

Three phenanthrolinium salts [phen HMCl₄] M=Ru(III), Fe(III), Cr(III) were synthesized and characterized by molar conductivity, infrared, ¹H; ¹³C NMR, DEPT and UV-Visible. According to all as the prepared salts, we can suggest that the phenanthrolinium cation and the metal tetrachloride anion are bonded by strong interaction hydrogen N...H...Cl and N...H...N. Finally, the cytotoxicity of the 1,10-phenanthroline was prevented by phenanthrolinium salt formation and stability of [FeCl₄][phenH].

Compound	λmax (nm)	Assignment
	· · · · · · · · · · · · · · · · · · ·	U .
1,10-phenanthroline	223	$\pi \rightarrow \pi^*$
	266	$\pi \rightarrow \pi^*$
	291	$\pi \rightarrow \pi^*$
[FeCl ₄][PhenH]	223	$\pi \rightarrow \pi^*$
	266	$\pi \rightarrow \pi^*$
	296	$\pi \rightarrow \pi^*$
	356	M→L
	524	
[CrCl ₄][PhenH]	221	$\pi \rightarrow \pi^*$
	273	$\pi \rightarrow \pi^*$
	295	$\pi \rightarrow \pi^*$
	318	M→L
	350	M→L
	450	
[RuCl ₄][PhenH]	224	$\pi \rightarrow \pi^*$
	266	$\pi \rightarrow \pi^*$
	294	$\pi \rightarrow \pi^*$
	313	M→L
	354	M→L
	480	

Table 3 UV-Visible data of the salts [MCl₄][PhenH] where M= Cr(III),Fe(III), Ru(III) in DMSO

References

- [1] Messori L, Abbate F, Marcon G, Orioli P, Fontani M, Mini E, Mazzei T, Carotti S, O'Connell T, Zanello P, J Med chem 2000, 43, 3541-3548.
- [2] Lee K, Kim K, Biotech letters 2003, 25, 1739-1742.
- [3] Ziessel R, Angew. Chem. Int Ed Engl 1998, 30, 844.
- [4] Chambron J C, Colin J P, Dalbavie J, Sauvage J P, Coord Chem Rev 1998,180, 1299.
- [5] Hudson Z D, Sanghvi C D, Rhine M A, Rhine J J, Bunge S D, Hardcastle C, Macbeth C, Eichler J F, J Chem Dalton Transactions 2009, 28, 7473-7480.
- [6] Larson K, Ohrstrom L, Inorg Chem Acta, 2004, 357, 657-664.
- [7] Devereux M, J Inorg Biochem 2007, 101, 881-892.
- [8] Hirohama T, Kuranuki Y, Ebina E, Sugizaki T, Arii H, chikira M, Selvi P T, Palaniandavar M, J Inorg Biochem 2005, 99, 1205-1219.
- [9] Bruni B, Goatia chemica Acta 1999, 72, 221-229.
- [10] Amani V, Nasser S, khavasi H R, Mirzzaei P, Polyhedron, 2007, 26, 4908-4914.
- [11] Kulkarni P, Padhye E S. Polyhedron 1998, 17, 2623-2626.
- [12] Sh-ichi I, Wada H, Ohtaki H, Bull Chem Soc 1985, 932-937.
- [13] Thevenet G, Toffoli P, Rodier N, Acta cyst 1977, B3, 2526-2529.
- [14] Nishigaki S, yoshioka H, Nakatsu K, Acta cyst 1978, B34, 875-879.
- [15] Tosoman S, Ruiz C I, Rios A, Frias E, Eichler J F, Open J Inorg Chem 2013,3, 7-13.
- [16] Khavasi H R, Amani H R, Safari N, Kristallog Z 2008, 223, 41-42.
- [17] EL Amane M, EL Hamdani H, Int J ChemTech Res 2014,6, 465-473.

© 2016, by the Authors. The articles published from this journal are distributed to the public under "**Creative Commons Attribution License**" (http://creative commons.org/licenses/by/3.0/). Therefore, upon proper citation of the original work, all the articles can be used without any restriction or can be distributed in any medium in any form.

Received 26^{th} Feb 2016Accepted 20^{th} Mar 2016Online 30^{th} Oct 2016