Quantum Chemical Study of Some Antihistamines as Inhibitors Corrosion for Copper in Nitric Acid Solution Using DFT Method

Quantum Chemical Study of Some Antihistamines as Inhibitors Corrosion for Copper in Nitric Acid Solution Using DFT Method

M. A. Tigori1*, A. Kouyate1, V. Kouakou2, P. M. Niamien2 and A. Trokourey2

1UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
2Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire

Keywords: Antihistamines, Inhibition properties, Acid nitric solution, Copper, DFT.

https://doi.org/10.37273/chesci.cs2051018PDF


Abstract

In this work three antihistamines namely 4-(8-chloro-5,6-dihydro-11H-benzo [5,6] cyclohepta [1,2-b] pyridin-11-ylidene)-1-piperidinecarboxylic acid ethyl ester or loratadine; 8-chloro-11-[1-[(5-methyl-3-pyridil)methyl] piperidin-4-ylidene]-6,11-dihydro-5H-benzo-[5,6] cyclohepta [1,2-b] pyridine or rupatadine and 2-[(1-[1-(4-fluorobenzyl)-1H-benzimidazol-2-yl]-4-piperidinyl)(methyl)amino-4(3H) pyrimidinone or mizolastine have been theoretically studied using density functional theory (DFT) at the B3LYP/6-31G(d) level in order to show their inhibition properties in the copper corrosion. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap (ΔE), dipole moment (μ), electronegativity (c) hardness (h), softness (S), electrophylicity indexh (w), electron affinity (A), ionization energy (I) and the fraction of electron transferred (ΔN) have been calculated and discussed. The local parameters as the Fukui function and condensed softness were analysed. This leads to a better understanding of the mechanism of corrosion inhibition. The results revealed that all inhibit corrosion and their inhibition efficiencies follow the order : mizolastine > loratadine > rupatadine.


References

  1. K. Abiola and A. O. James. The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corrosion science, 2010, 52, 661-664.
  2. H. Hussin and M. J. Kassim. Electrochemical, thermodynamic and adsorption studies of catechin hydrate as natural mild steel corrosion inhibitor in 1 M HCl. International Journal of Electrochemical Science, 2011, 5, 1396–1414.
  3. Lukman O., Olasunkanmi, Lukman O. and Eno E. Ebenso. Experimental and computational studies on propanone derivatives of quinoxalin-6-yl-4, 5-dihydropyrazole as inhibitors of mild steel corrosion in hydrochloric acid. Journal of Colloid and Interface Science, 2020, 561,104-116.
  4. O. Eddy, S. A. Odoemelam and P. Ekwumemgbo. Inhibition of the corrosion of mild steel in H2SO4 by penicillin. Scientific Research and Essays, 2009, 4, 33-38.
  5. O. Eddy and S. A. Odoemelam, Inhibition of the corrosion of mild steel in acidic medium by penicillin V potassium. Advances in Natural and Applied Sciences, 2008, 2, 225–232.
  6. Ouattara, M. A. Tigori, V. Kouakou, P. M. Niamien and A. Trokourey. Combining DFT and QSPR methods for interpreting cefepime inhibiting properties in copper corrosion in 1M HNO3. Journal of Chemical, Biological and Physical Sciences, 2019, 9,253-273.
  7. B. Obot. Synergistic effect of nizoral and iodide ions on the corrosion inhibition of mild steel in sulphuric acid solution. Portugaliae Electrochimica Acta, 2009, 27, 539–553.
  8. B. Obot, N.O. and Obi-Egbedi. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole : experimental and theoretical investigation. Corrosion science, 2010, 52, 198–204.
  9. Bashir, S., Sharma, V., Kumar, S., Ghelichkhah, Z., Obotd, I. B. and Kumara, A. Inhibition Performances of Nicotinamide against Aluminum Corrosion in an Acidic Medium. Portugaliae Electrochimica Acta, 2020, 38, 107-123.
  10. Regina Fuchs-Godec and Gregor Zerjav. Corrosion resistance of high-level-hydrophobic layers in combinationwith Vitamin E as green inhibitor. Corrosion Science, 2015, 97, 7–16.
  11. S. Ekop and N. O. Eddy. Inhibitive and adsorptive properties of orphenadrine for the corrosion of mild steel in H2SO4. Australian Journal of Basic Applied Science, 2008, 2, 1258 -1263.
  12. E. Ebenso and N. O. Eddy, A. O. Odiongenyi. Corrosion inhibition and adsorption properties of methocarbamol on mild steel in acidic medium. Portugaliae Electrochimica Acta, 2009, 27:13–22.
  13. P. Cicileo, B. M. Rosales, F. E. Varela and J. R. Vilche. Comparative study of organic inhibitors of copper corrosion. Corrosion Science, 1999, 49, 1359-1375.
  14. Geceand and S. Bilgic. Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corrosion Science, 2009, 8, 1876–1878.
  15. O. Obi-Egbedi, I. B. Obot, and M. I. El-Khaiary. Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. Journal of Molecular Structure, 2011, 3, 86– 96.
  16. Gowrani. Gravimetric and Quantum Chemical Analysis of Brass Corrosion Inhibition by Inhibitors in Aqueous Medium. Chemical Science Review and Letters, 2018, 2278-6783.
  17. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A. T. Benjelloun M. Ebu and Touhami. DFT theoretical study of 7-R-3 methylquinoxalin-2(1H)-thiones as corrosion inhibition in hydrochloric acid. Corrosion Science, 2013, 68, 223-230.
  18. K. Yadav, M. A. Quraishi, and B. Maiti. Inhibition effect of some benzylidenes on mild steel in HCl : An experimental and theoretical correlation. Corrosion science, 2012, 65, 254-266.
  19. H. Cohen, Nalewajski RF, In Topics in Current Chemistry, Heidelberg, Germany, 1996, p143.
  20. Lee, W. Yang and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 1988, 37, 785-789.
  21. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and A. D. J. Fox, Gaussian, Inc., Wallingford, 2009, 09.
  22. Koopmans and T. Über die.Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines. Atoms. Physica 1934, 1, 104–13.
  23. G. Parr and R. G. Pearson. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 1983, 105, 7512-7516.
  24. G. Parr, L. Szentpaly and S. Liu. Electrophilicity index. Journal of the American Chemical society, 1999, 121, 1922-1924.
  25. G. Pearson. Absolute Electronegativity and Hardness. Application to Inorganic Chemistry, 1988, 4,734-740.
  26. Parr, R.G. and Yang, W. Density functional approach to the frontier-electron theory. Journal of the American Chemical Society, 1984, 106, 4049–4050.
  27. Lee C, Yang W and Parr RG. Local softness and chemical reactivity in the molecules CO, SCN−and H2CO. Journal of Molecular structure : Theochem, 1988, 163, 305-313.
  28. Yang and W. J. Mortier. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. Journal of the American Chemical Society, 1986, 108, 5708-5711.
  29. Yang and R. G. Parr. Hardness, softness and the Fukui function in the electronic theory of metals and catalysis. Proceeding of the National Academy of Sciences U.S.A, 1985, 82, 6723-6726.
  30. J. S. Dewar and W. Thiel. Ground states of molecules, the mndo method approximations and parameters. Journal of Chemical Physics, 1977, 99, 4899-4907.
  31. K. Awad, M. R. Mustafa and M. M. Abo Elnga. Computational simulation of the molecular Structure of some triazoles as inhibitors for the corrosion of metal surface. Journal of Molecular Structure (Theochem), 2010, 959, 66-74.
  32. G. Zhang, W. Lei, M. Z. Xia and F. Y. Wang. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. Journal of Molecular Structure (Theochem), 2005, 732, 173-182.
  33. Lebrini, M. Lagrenée, H. Vezin, M. Traisnel and F. Bentiss. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds. Corrosion Science, 2007, 49, 2254-2269.
  34. Khalil, Quantum chemical approach of corrosion inhibition. Electrochimica Acta, 2003, 48,2635-2640.
  35. F. Khaled. Molecular simulation, quantum chemical calculations and electrochemical studies inhibition of mild steel by triazoles. Electrochimica Acta, 2008, 53, 3484-3492.
  36. A. Wazzan and F.M. Mahgoub. DFT Calculations for Corrosion Inhibition of Ferrous Alloys by Pyrazolopyrimidine Derivatives. Open Journal of Physical Chemistry, 2014, 4, 6-14.
  37. Obi-Egbedi N. O. and Obot I. B. Inhibitive properties, thermodynamic and quantum. chemical studies of alloxazine on mild steel corrosion in H2SO4. Corrosion Science, 2011, 53, 263-275.
  38. Saranya J., Sounthari P, Paranswari K. and Chitra S. Adsorption and density functional theory on Corrosion of mild steel by a quinoxaline derivative. Der Pharma Chemica, 2015, 8, 187-196.
  39. Geerlings P and De Proft F. Chemical reactivity as described by quantum chemical methods. International Journal of Molecular Sciences, 2002, 3: 276-309.
  40. B. Obot, and Z. M. Gasem. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corrosion Science, 2014, 83, 359-366.
  41. Lukovits I, Kalman E and Zucchi F. Corrosion inhibitors-correlation between electronic structure and efficiency. Corrosion, 2001, 1, 3-8.
  42. G. Parr, L. Szentpaly and S. Liu. Electrophilicity index. Journal of the American Chemical Society, 1999, 121, 1922-1924.
  43. Udhayakala and T. V. Rajendiran. A theoretical evaluation on benzothiazole derivatives as corrosion inhibitors on mild Steel. Der Pharma Chemica, 2015, 7, 92-99.
  44. Mendez and J. L. Gazquez. Reactivity of enolate ions : the Local Hard and Soft Acids and Bases Principle Viewpoint. Journal of the American Chemical Society, 1994, 116, 9298-9301.